File:  [local] / rpl / lapack / lapack / zhetd2.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:24 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transformation (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETD2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetd2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetd2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetd2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   D( * ), E( * )
   29: *       COMPLEX*16         A( LDA, * ), TAU( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZHETD2 reduces a complex Hermitian matrix A to real symmetric
   39: *> tridiagonal form T by a unitary similarity transformation:
   40: *> Q**H * A * Q = T.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the upper or lower triangular part of the
   50: *>          Hermitian matrix A is stored:
   51: *>          = 'U':  Upper triangular
   52: *>          = 'L':  Lower triangular
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] A
   62: *> \verbatim
   63: *>          A is COMPLEX*16 array, dimension (LDA,N)
   64: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   65: *>          n-by-n upper triangular part of A contains the upper
   66: *>          triangular part of the matrix A, and the strictly lower
   67: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   68: *>          leading n-by-n lower triangular part of A contains the lower
   69: *>          triangular part of the matrix A, and the strictly upper
   70: *>          triangular part of A is not referenced.
   71: *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
   72: *>          of A are overwritten by the corresponding elements of the
   73: *>          tridiagonal matrix T, and the elements above the first
   74: *>          superdiagonal, with the array TAU, represent the unitary
   75: *>          matrix Q as a product of elementary reflectors; if UPLO
   76: *>          = 'L', the diagonal and first subdiagonal of A are over-
   77: *>          written by the corresponding elements of the tridiagonal
   78: *>          matrix T, and the elements below the first subdiagonal, with
   79: *>          the array TAU, represent the unitary matrix Q as a product
   80: *>          of elementary reflectors. See Further Details.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] D
   90: *> \verbatim
   91: *>          D is DOUBLE PRECISION array, dimension (N)
   92: *>          The diagonal elements of the tridiagonal matrix T:
   93: *>          D(i) = A(i,i).
   94: *> \endverbatim
   95: *>
   96: *> \param[out] E
   97: *> \verbatim
   98: *>          E is DOUBLE PRECISION array, dimension (N-1)
   99: *>          The off-diagonal elements of the tridiagonal matrix T:
  100: *>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
  101: *> \endverbatim
  102: *>
  103: *> \param[out] TAU
  104: *> \verbatim
  105: *>          TAU is COMPLEX*16 array, dimension (N-1)
  106: *>          The scalar factors of the elementary reflectors (see Further
  107: *>          Details).
  108: *> \endverbatim
  109: *>
  110: *> \param[out] INFO
  111: *> \verbatim
  112: *>          INFO is INTEGER
  113: *>          = 0:  successful exit
  114: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  115: *> \endverbatim
  116: *
  117: *  Authors:
  118: *  ========
  119: *
  120: *> \author Univ. of Tennessee
  121: *> \author Univ. of California Berkeley
  122: *> \author Univ. of Colorado Denver
  123: *> \author NAG Ltd.
  124: *
  125: *> \ingroup complex16HEcomputational
  126: *
  127: *> \par Further Details:
  128: *  =====================
  129: *>
  130: *> \verbatim
  131: *>
  132: *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
  133: *>  reflectors
  134: *>
  135: *>     Q = H(n-1) . . . H(2) H(1).
  136: *>
  137: *>  Each H(i) has the form
  138: *>
  139: *>     H(i) = I - tau * v * v**H
  140: *>
  141: *>  where tau is a complex scalar, and v is a complex vector with
  142: *>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
  143: *>  A(1:i-1,i+1), and tau in TAU(i).
  144: *>
  145: *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
  146: *>  reflectors
  147: *>
  148: *>     Q = H(1) H(2) . . . H(n-1).
  149: *>
  150: *>  Each H(i) has the form
  151: *>
  152: *>     H(i) = I - tau * v * v**H
  153: *>
  154: *>  where tau is a complex scalar, and v is a complex vector with
  155: *>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
  156: *>  and tau in TAU(i).
  157: *>
  158: *>  The contents of A on exit are illustrated by the following examples
  159: *>  with n = 5:
  160: *>
  161: *>  if UPLO = 'U':                       if UPLO = 'L':
  162: *>
  163: *>    (  d   e   v2  v3  v4 )              (  d                  )
  164: *>    (      d   e   v3  v4 )              (  e   d              )
  165: *>    (          d   e   v4 )              (  v1  e   d          )
  166: *>    (              d   e  )              (  v1  v2  e   d      )
  167: *>    (                  d  )              (  v1  v2  v3  e   d  )
  168: *>
  169: *>  where d and e denote diagonal and off-diagonal elements of T, and vi
  170: *>  denotes an element of the vector defining H(i).
  171: *> \endverbatim
  172: *>
  173: *  =====================================================================
  174:       SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
  175: *
  176: *  -- LAPACK computational routine --
  177: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  178: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  179: *
  180: *     .. Scalar Arguments ..
  181:       CHARACTER          UPLO
  182:       INTEGER            INFO, LDA, N
  183: *     ..
  184: *     .. Array Arguments ..
  185:       DOUBLE PRECISION   D( * ), E( * )
  186:       COMPLEX*16         A( LDA, * ), TAU( * )
  187: *     ..
  188: *
  189: *  =====================================================================
  190: *
  191: *     .. Parameters ..
  192:       COMPLEX*16         ONE, ZERO, HALF
  193:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
  194:      $                   ZERO = ( 0.0D+0, 0.0D+0 ),
  195:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
  196: *     ..
  197: *     .. Local Scalars ..
  198:       LOGICAL            UPPER
  199:       INTEGER            I
  200:       COMPLEX*16         ALPHA, TAUI
  201: *     ..
  202: *     .. External Subroutines ..
  203:       EXTERNAL           XERBLA, ZAXPY, ZHEMV, ZHER2, ZLARFG
  204: *     ..
  205: *     .. External Functions ..
  206:       LOGICAL            LSAME
  207:       COMPLEX*16         ZDOTC
  208:       EXTERNAL           LSAME, ZDOTC
  209: *     ..
  210: *     .. Intrinsic Functions ..
  211:       INTRINSIC          DBLE, MAX, MIN
  212: *     ..
  213: *     .. Executable Statements ..
  214: *
  215: *     Test the input parameters
  216: *
  217:       INFO = 0
  218:       UPPER = LSAME( UPLO, 'U')
  219:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  220:          INFO = -1
  221:       ELSE IF( N.LT.0 ) THEN
  222:          INFO = -2
  223:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  224:          INFO = -4
  225:       END IF
  226:       IF( INFO.NE.0 ) THEN
  227:          CALL XERBLA( 'ZHETD2', -INFO )
  228:          RETURN
  229:       END IF
  230: *
  231: *     Quick return if possible
  232: *
  233:       IF( N.LE.0 )
  234:      $   RETURN
  235: *
  236:       IF( UPPER ) THEN
  237: *
  238: *        Reduce the upper triangle of A
  239: *
  240:          A( N, N ) = DBLE( A( N, N ) )
  241:          DO 10 I = N - 1, 1, -1
  242: *
  243: *           Generate elementary reflector H(i) = I - tau * v * v**H
  244: *           to annihilate A(1:i-1,i+1)
  245: *
  246:             ALPHA = A( I, I+1 )
  247:             CALL ZLARFG( I, ALPHA, A( 1, I+1 ), 1, TAUI )
  248:             E( I ) = DBLE( ALPHA )
  249: *
  250:             IF( TAUI.NE.ZERO ) THEN
  251: *
  252: *              Apply H(i) from both sides to A(1:i,1:i)
  253: *
  254:                A( I, I+1 ) = ONE
  255: *
  256: *              Compute  x := tau * A * v  storing x in TAU(1:i)
  257: *
  258:                CALL ZHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
  259:      $                     TAU, 1 )
  260: *
  261: *              Compute  w := x - 1/2 * tau * (x**H * v) * v
  262: *
  263:                ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, A( 1, I+1 ), 1 )
  264:                CALL ZAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
  265: *
  266: *              Apply the transformation as a rank-2 update:
  267: *                 A := A - v * w**H - w * v**H
  268: *
  269:                CALL ZHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
  270:      $                     LDA )
  271: *
  272:             ELSE
  273:                A( I, I ) = DBLE( A( I, I ) )
  274:             END IF
  275:             A( I, I+1 ) = E( I )
  276:             D( I+1 ) = DBLE( A( I+1, I+1 ) )
  277:             TAU( I ) = TAUI
  278:    10    CONTINUE
  279:          D( 1 ) = DBLE( A( 1, 1 ) )
  280:       ELSE
  281: *
  282: *        Reduce the lower triangle of A
  283: *
  284:          A( 1, 1 ) = DBLE( A( 1, 1 ) )
  285:          DO 20 I = 1, N - 1
  286: *
  287: *           Generate elementary reflector H(i) = I - tau * v * v**H
  288: *           to annihilate A(i+2:n,i)
  289: *
  290:             ALPHA = A( I+1, I )
  291:             CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAUI )
  292:             E( I ) = DBLE( ALPHA )
  293: *
  294:             IF( TAUI.NE.ZERO ) THEN
  295: *
  296: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
  297: *
  298:                A( I+1, I ) = ONE
  299: *
  300: *              Compute  x := tau * A * v  storing y in TAU(i:n-1)
  301: *
  302:                CALL ZHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
  303:      $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
  304: *
  305: *              Compute  w := x - 1/2 * tau * (x**H * v) * v
  306: *
  307:                ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, A( I+1, I ),
  308:      $                 1 )
  309:                CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
  310: *
  311: *              Apply the transformation as a rank-2 update:
  312: *                 A := A - v * w**H - w * v**H
  313: *
  314:                CALL ZHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
  315:      $                     A( I+1, I+1 ), LDA )
  316: *
  317:             ELSE
  318:                A( I+1, I+1 ) = DBLE( A( I+1, I+1 ) )
  319:             END IF
  320:             A( I+1, I ) = E( I )
  321:             D( I ) = DBLE( A( I, I ) )
  322:             TAU( I ) = TAUI
  323:    20    CONTINUE
  324:          D( N ) = DBLE( A( N, N ) )
  325:       END IF
  326: *
  327:       RETURN
  328: *
  329: *     End of ZHETD2
  330: *
  331:       END

CVSweb interface <joel.bertrand@systella.fr>