Annotation of rpl/lapack/lapack/zhetd2.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       CHARACTER          UPLO
                     10:       INTEGER            INFO, LDA, N
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   D( * ), E( * )
                     14:       COMPLEX*16         A( LDA, * ), TAU( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  ZHETD2 reduces a complex Hermitian matrix A to real symmetric
                     21: *  tridiagonal form T by a unitary similarity transformation:
                     22: *  Q' * A * Q = T.
                     23: *
                     24: *  Arguments
                     25: *  =========
                     26: *
                     27: *  UPLO    (input) CHARACTER*1
                     28: *          Specifies whether the upper or lower triangular part of the
                     29: *          Hermitian matrix A is stored:
                     30: *          = 'U':  Upper triangular
                     31: *          = 'L':  Lower triangular
                     32: *
                     33: *  N       (input) INTEGER
                     34: *          The order of the matrix A.  N >= 0.
                     35: *
                     36: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     37: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     38: *          n-by-n upper triangular part of A contains the upper
                     39: *          triangular part of the matrix A, and the strictly lower
                     40: *          triangular part of A is not referenced.  If UPLO = 'L', the
                     41: *          leading n-by-n lower triangular part of A contains the lower
                     42: *          triangular part of the matrix A, and the strictly upper
                     43: *          triangular part of A is not referenced.
                     44: *          On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     45: *          of A are overwritten by the corresponding elements of the
                     46: *          tridiagonal matrix T, and the elements above the first
                     47: *          superdiagonal, with the array TAU, represent the unitary
                     48: *          matrix Q as a product of elementary reflectors; if UPLO
                     49: *          = 'L', the diagonal and first subdiagonal of A are over-
                     50: *          written by the corresponding elements of the tridiagonal
                     51: *          matrix T, and the elements below the first subdiagonal, with
                     52: *          the array TAU, represent the unitary matrix Q as a product
                     53: *          of elementary reflectors. See Further Details.
                     54: *
                     55: *  LDA     (input) INTEGER
                     56: *          The leading dimension of the array A.  LDA >= max(1,N).
                     57: *
                     58: *  D       (output) DOUBLE PRECISION array, dimension (N)
                     59: *          The diagonal elements of the tridiagonal matrix T:
                     60: *          D(i) = A(i,i).
                     61: *
                     62: *  E       (output) DOUBLE PRECISION array, dimension (N-1)
                     63: *          The off-diagonal elements of the tridiagonal matrix T:
                     64: *          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
                     65: *
                     66: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
                     67: *          The scalar factors of the elementary reflectors (see Further
                     68: *          Details).
                     69: *
                     70: *  INFO    (output) INTEGER
                     71: *          = 0:  successful exit
                     72: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                     73: *
                     74: *  Further Details
                     75: *  ===============
                     76: *
                     77: *  If UPLO = 'U', the matrix Q is represented as a product of elementary
                     78: *  reflectors
                     79: *
                     80: *     Q = H(n-1) . . . H(2) H(1).
                     81: *
                     82: *  Each H(i) has the form
                     83: *
                     84: *     H(i) = I - tau * v * v'
                     85: *
                     86: *  where tau is a complex scalar, and v is a complex vector with
                     87: *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
                     88: *  A(1:i-1,i+1), and tau in TAU(i).
                     89: *
                     90: *  If UPLO = 'L', the matrix Q is represented as a product of elementary
                     91: *  reflectors
                     92: *
                     93: *     Q = H(1) H(2) . . . H(n-1).
                     94: *
                     95: *  Each H(i) has the form
                     96: *
                     97: *     H(i) = I - tau * v * v'
                     98: *
                     99: *  where tau is a complex scalar, and v is a complex vector with
                    100: *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
                    101: *  and tau in TAU(i).
                    102: *
                    103: *  The contents of A on exit are illustrated by the following examples
                    104: *  with n = 5:
                    105: *
                    106: *  if UPLO = 'U':                       if UPLO = 'L':
                    107: *
                    108: *    (  d   e   v2  v3  v4 )              (  d                  )
                    109: *    (      d   e   v3  v4 )              (  e   d              )
                    110: *    (          d   e   v4 )              (  v1  e   d          )
                    111: *    (              d   e  )              (  v1  v2  e   d      )
                    112: *    (                  d  )              (  v1  v2  v3  e   d  )
                    113: *
                    114: *  where d and e denote diagonal and off-diagonal elements of T, and vi
                    115: *  denotes an element of the vector defining H(i).
                    116: *
                    117: *  =====================================================================
                    118: *
                    119: *     .. Parameters ..
                    120:       COMPLEX*16         ONE, ZERO, HALF
                    121:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
                    122:      $                   ZERO = ( 0.0D+0, 0.0D+0 ),
                    123:      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
                    124: *     ..
                    125: *     .. Local Scalars ..
                    126:       LOGICAL            UPPER
                    127:       INTEGER            I
                    128:       COMPLEX*16         ALPHA, TAUI
                    129: *     ..
                    130: *     .. External Subroutines ..
                    131:       EXTERNAL           XERBLA, ZAXPY, ZHEMV, ZHER2, ZLARFG
                    132: *     ..
                    133: *     .. External Functions ..
                    134:       LOGICAL            LSAME
                    135:       COMPLEX*16         ZDOTC
                    136:       EXTERNAL           LSAME, ZDOTC
                    137: *     ..
                    138: *     .. Intrinsic Functions ..
                    139:       INTRINSIC          DBLE, MAX, MIN
                    140: *     ..
                    141: *     .. Executable Statements ..
                    142: *
                    143: *     Test the input parameters
                    144: *
                    145:       INFO = 0
                    146:       UPPER = LSAME( UPLO, 'U' )
                    147:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    148:          INFO = -1
                    149:       ELSE IF( N.LT.0 ) THEN
                    150:          INFO = -2
                    151:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    152:          INFO = -4
                    153:       END IF
                    154:       IF( INFO.NE.0 ) THEN
                    155:          CALL XERBLA( 'ZHETD2', -INFO )
                    156:          RETURN
                    157:       END IF
                    158: *
                    159: *     Quick return if possible
                    160: *
                    161:       IF( N.LE.0 )
                    162:      $   RETURN
                    163: *
                    164:       IF( UPPER ) THEN
                    165: *
                    166: *        Reduce the upper triangle of A
                    167: *
                    168:          A( N, N ) = DBLE( A( N, N ) )
                    169:          DO 10 I = N - 1, 1, -1
                    170: *
                    171: *           Generate elementary reflector H(i) = I - tau * v * v'
                    172: *           to annihilate A(1:i-1,i+1)
                    173: *
                    174:             ALPHA = A( I, I+1 )
                    175:             CALL ZLARFG( I, ALPHA, A( 1, I+1 ), 1, TAUI )
                    176:             E( I ) = ALPHA
                    177: *
                    178:             IF( TAUI.NE.ZERO ) THEN
                    179: *
                    180: *              Apply H(i) from both sides to A(1:i,1:i)
                    181: *
                    182:                A( I, I+1 ) = ONE
                    183: *
                    184: *              Compute  x := tau * A * v  storing x in TAU(1:i)
                    185: *
                    186:                CALL ZHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
                    187:      $                     TAU, 1 )
                    188: *
                    189: *              Compute  w := x - 1/2 * tau * (x'*v) * v
                    190: *
                    191:                ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, A( 1, I+1 ), 1 )
                    192:                CALL ZAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
                    193: *
                    194: *              Apply the transformation as a rank-2 update:
                    195: *                 A := A - v * w' - w * v'
                    196: *
                    197:                CALL ZHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
                    198:      $                     LDA )
                    199: *
                    200:             ELSE
                    201:                A( I, I ) = DBLE( A( I, I ) )
                    202:             END IF
                    203:             A( I, I+1 ) = E( I )
                    204:             D( I+1 ) = A( I+1, I+1 )
                    205:             TAU( I ) = TAUI
                    206:    10    CONTINUE
                    207:          D( 1 ) = A( 1, 1 )
                    208:       ELSE
                    209: *
                    210: *        Reduce the lower triangle of A
                    211: *
                    212:          A( 1, 1 ) = DBLE( A( 1, 1 ) )
                    213:          DO 20 I = 1, N - 1
                    214: *
                    215: *           Generate elementary reflector H(i) = I - tau * v * v'
                    216: *           to annihilate A(i+2:n,i)
                    217: *
                    218:             ALPHA = A( I+1, I )
                    219:             CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAUI )
                    220:             E( I ) = ALPHA
                    221: *
                    222:             IF( TAUI.NE.ZERO ) THEN
                    223: *
                    224: *              Apply H(i) from both sides to A(i+1:n,i+1:n)
                    225: *
                    226:                A( I+1, I ) = ONE
                    227: *
                    228: *              Compute  x := tau * A * v  storing y in TAU(i:n-1)
                    229: *
                    230:                CALL ZHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
                    231:      $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
                    232: *
                    233: *              Compute  w := x - 1/2 * tau * (x'*v) * v
                    234: *
                    235:                ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, A( I+1, I ),
                    236:      $                 1 )
                    237:                CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
                    238: *
                    239: *              Apply the transformation as a rank-2 update:
                    240: *                 A := A - v * w' - w * v'
                    241: *
                    242:                CALL ZHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
                    243:      $                     A( I+1, I+1 ), LDA )
                    244: *
                    245:             ELSE
                    246:                A( I+1, I+1 ) = DBLE( A( I+1, I+1 ) )
                    247:             END IF
                    248:             A( I+1, I ) = E( I )
                    249:             D( I ) = A( I, I )
                    250:             TAU( I ) = TAUI
                    251:    20    CONTINUE
                    252:          D( N ) = A( N, N )
                    253:       END IF
                    254: *
                    255:       RETURN
                    256: *
                    257: *     End of ZHETD2
                    258: *
                    259:       END

CVSweb interface <joel.bertrand@systella.fr>