Diff for /rpl/lapack/lapack/zhetd2.f between versions 1.7 and 1.8

version 1.7, 2010/12/21 13:53:46 version 1.8, 2011/07/22 07:38:15
Line 1 Line 1
       SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )        SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
 *  *
 *  -- LAPACK routine (version 3.2) --  *  -- LAPACK routine (version 3.3.1) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *     November 2006  *  -- April 2011                                                      --
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       CHARACTER          UPLO        CHARACTER          UPLO
Line 19 Line 19
 *  *
 *  ZHETD2 reduces a complex Hermitian matrix A to real symmetric  *  ZHETD2 reduces a complex Hermitian matrix A to real symmetric
 *  tridiagonal form T by a unitary similarity transformation:  *  tridiagonal form T by a unitary similarity transformation:
 *  Q' * A * Q = T.  *  Q**H * A * Q = T.
 *  *
 *  Arguments  *  Arguments
 *  =========  *  =========
Line 81 Line 81
 *  *
 *  Each H(i) has the form  *  Each H(i) has the form
 *  *
 *     H(i) = I - tau * v * v'  *     H(i) = I - tau * v * v**H
 *  *
 *  where tau is a complex scalar, and v is a complex vector with  *  where tau is a complex scalar, and v is a complex vector with
 *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in  *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
Line 94 Line 94
 *  *
 *  Each H(i) has the form  *  Each H(i) has the form
 *  *
 *     H(i) = I - tau * v * v'  *     H(i) = I - tau * v * v**H
 *  *
 *  where tau is a complex scalar, and v is a complex vector with  *  where tau is a complex scalar, and v is a complex vector with
 *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),  *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
Line 143 Line 143
 *     Test the input parameters  *     Test the input parameters
 *  *
       INFO = 0        INFO = 0
       UPPER = LSAME( UPLO, 'U' )        UPPER = LSAME( UPLO, 'U')
       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN        IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
          INFO = -1           INFO = -1
       ELSE IF( N.LT.0 ) THEN        ELSE IF( N.LT.0 ) THEN
Line 168 Line 168
          A( N, N ) = DBLE( A( N, N ) )           A( N, N ) = DBLE( A( N, N ) )
          DO 10 I = N - 1, 1, -1           DO 10 I = N - 1, 1, -1
 *  *
 *           Generate elementary reflector H(i) = I - tau * v * v'  *           Generate elementary reflector H(i) = I - tau * v * v**H
 *           to annihilate A(1:i-1,i+1)  *           to annihilate A(1:i-1,i+1)
 *  *
             ALPHA = A( I, I+1 )              ALPHA = A( I, I+1 )
Line 186 Line 186
                CALL ZHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,                 CALL ZHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
      $                     TAU, 1 )       $                     TAU, 1 )
 *  *
 *              Compute  w := x - 1/2 * tau * (x'*v) * v  *              Compute  w := x - 1/2 * tau * (x**H * v) * v
 *  *
                ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, A( 1, I+1 ), 1 )                 ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, A( 1, I+1 ), 1 )
                CALL ZAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )                 CALL ZAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
 *  *
 *              Apply the transformation as a rank-2 update:  *              Apply the transformation as a rank-2 update:
 *                 A := A - v * w' - w * v'  *                 A := A - v * w**H - w * v**H
 *  *
                CALL ZHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,                 CALL ZHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
      $                     LDA )       $                     LDA )
Line 212 Line 212
          A( 1, 1 ) = DBLE( A( 1, 1 ) )           A( 1, 1 ) = DBLE( A( 1, 1 ) )
          DO 20 I = 1, N - 1           DO 20 I = 1, N - 1
 *  *
 *           Generate elementary reflector H(i) = I - tau * v * v'  *           Generate elementary reflector H(i) = I - tau * v * v**H
 *           to annihilate A(i+2:n,i)  *           to annihilate A(i+2:n,i)
 *  *
             ALPHA = A( I+1, I )              ALPHA = A( I+1, I )
Line 230 Line 230
                CALL ZHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,                 CALL ZHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
      $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )       $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
 *  *
 *              Compute  w := x - 1/2 * tau * (x'*v) * v  *              Compute  w := x - 1/2 * tau * (x**H * v) * v
 *  *
                ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, A( I+1, I ),                 ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, A( I+1, I ),
      $                 1 )       $                 1 )
                CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )                 CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
 *  *
 *              Apply the transformation as a rank-2 update:  *              Apply the transformation as a rank-2 update:
 *                 A := A - v * w' - w * v'  *                 A := A - v * w**H - w * v**H
 *  *
                CALL ZHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,                 CALL ZHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
      $                     A( I+1, I+1 ), LDA )       $                     A( I+1, I+1 ), LDA )

Removed from v.1.7  
changed lines
  Added in v.1.8


CVSweb interface <joel.bertrand@systella.fr>