File:  [local] / rpl / lapack / lapack / zhesvxx.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:24 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZHESVXX computes the solution to system of linear equations A * X = B for HE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHESVXX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhesvxx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhesvxx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhesvxx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
   22: *                           EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
   23: *                           N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
   24: *                           NPARAMS, PARAMS, WORK, RWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          EQUED, FACT, UPLO
   28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
   29: *      $                   N_ERR_BNDS
   30: *       DOUBLE PRECISION   RCOND, RPVGRW
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       INTEGER            IPIV( * )
   34: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   35: *      $                   WORK( * ), X( LDX, * )
   36: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
   37: *      $                   ERR_BNDS_NORM( NRHS, * ),
   38: *      $                   ERR_BNDS_COMP( NRHS, * )
   39: *       ..
   40: *
   41: *
   42: *> \par Purpose:
   43: *  =============
   44: *>
   45: *> \verbatim
   46: *>
   47: *>    ZHESVXX uses the diagonal pivoting factorization to compute the
   48: *>    solution to a complex*16 system of linear equations A * X = B, where
   49: *>    A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
   50: *>    matrices.
   51: *>
   52: *>    If requested, both normwise and maximum componentwise error bounds
   53: *>    are returned. ZHESVXX will return a solution with a tiny
   54: *>    guaranteed error (O(eps) where eps is the working machine
   55: *>    precision) unless the matrix is very ill-conditioned, in which
   56: *>    case a warning is returned. Relevant condition numbers also are
   57: *>    calculated and returned.
   58: *>
   59: *>    ZHESVXX accepts user-provided factorizations and equilibration
   60: *>    factors; see the definitions of the FACT and EQUED options.
   61: *>    Solving with refinement and using a factorization from a previous
   62: *>    ZHESVXX call will also produce a solution with either O(eps)
   63: *>    errors or warnings, but we cannot make that claim for general
   64: *>    user-provided factorizations and equilibration factors if they
   65: *>    differ from what ZHESVXX would itself produce.
   66: *> \endverbatim
   67: *
   68: *> \par Description:
   69: *  =================
   70: *>
   71: *> \verbatim
   72: *>
   73: *>    The following steps are performed:
   74: *>
   75: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
   76: *>    the system:
   77: *>
   78: *>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
   79: *>
   80: *>    Whether or not the system will be equilibrated depends on the
   81: *>    scaling of the matrix A, but if equilibration is used, A is
   82: *>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
   83: *>
   84: *>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
   85: *>    the matrix A (after equilibration if FACT = 'E') as
   86: *>
   87: *>       A = U * D * U**T,  if UPLO = 'U', or
   88: *>       A = L * D * L**T,  if UPLO = 'L',
   89: *>
   90: *>    where U (or L) is a product of permutation and unit upper (lower)
   91: *>    triangular matrices, and D is Hermitian and block diagonal with
   92: *>    1-by-1 and 2-by-2 diagonal blocks.
   93: *>
   94: *>    3. If some D(i,i)=0, so that D is exactly singular, then the
   95: *>    routine returns with INFO = i. Otherwise, the factored form of A
   96: *>    is used to estimate the condition number of the matrix A (see
   97: *>    argument RCOND).  If the reciprocal of the condition number is
   98: *>    less than machine precision, the routine still goes on to solve
   99: *>    for X and compute error bounds as described below.
  100: *>
  101: *>    4. The system of equations is solved for X using the factored form
  102: *>    of A.
  103: *>
  104: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
  105: *>    the routine will use iterative refinement to try to get a small
  106: *>    error and error bounds.  Refinement calculates the residual to at
  107: *>    least twice the working precision.
  108: *>
  109: *>    6. If equilibration was used, the matrix X is premultiplied by
  110: *>    diag(R) so that it solves the original system before
  111: *>    equilibration.
  112: *> \endverbatim
  113: *
  114: *  Arguments:
  115: *  ==========
  116: *
  117: *> \verbatim
  118: *>     Some optional parameters are bundled in the PARAMS array.  These
  119: *>     settings determine how refinement is performed, but often the
  120: *>     defaults are acceptable.  If the defaults are acceptable, users
  121: *>     can pass NPARAMS = 0 which prevents the source code from accessing
  122: *>     the PARAMS argument.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] FACT
  126: *> \verbatim
  127: *>          FACT is CHARACTER*1
  128: *>     Specifies whether or not the factored form of the matrix A is
  129: *>     supplied on entry, and if not, whether the matrix A should be
  130: *>     equilibrated before it is factored.
  131: *>       = 'F':  On entry, AF and IPIV contain the factored form of A.
  132: *>               If EQUED is not 'N', the matrix A has been
  133: *>               equilibrated with scaling factors given by S.
  134: *>               A, AF, and IPIV are not modified.
  135: *>       = 'N':  The matrix A will be copied to AF and factored.
  136: *>       = 'E':  The matrix A will be equilibrated if necessary, then
  137: *>               copied to AF and factored.
  138: *> \endverbatim
  139: *>
  140: *> \param[in] UPLO
  141: *> \verbatim
  142: *>          UPLO is CHARACTER*1
  143: *>       = 'U':  Upper triangle of A is stored;
  144: *>       = 'L':  Lower triangle of A is stored.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] N
  148: *> \verbatim
  149: *>          N is INTEGER
  150: *>     The number of linear equations, i.e., the order of the
  151: *>     matrix A.  N >= 0.
  152: *> \endverbatim
  153: *>
  154: *> \param[in] NRHS
  155: *> \verbatim
  156: *>          NRHS is INTEGER
  157: *>     The number of right hand sides, i.e., the number of columns
  158: *>     of the matrices B and X.  NRHS >= 0.
  159: *> \endverbatim
  160: *>
  161: *> \param[in,out] A
  162: *> \verbatim
  163: *>          A is COMPLEX*16 array, dimension (LDA,N)
  164: *>     The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
  165: *>     upper triangular part of A contains the upper triangular
  166: *>     part of the matrix A, and the strictly lower triangular
  167: *>     part of A is not referenced.  If UPLO = 'L', the leading
  168: *>     N-by-N lower triangular part of A contains the lower
  169: *>     triangular part of the matrix A, and the strictly upper
  170: *>     triangular part of A is not referenced.
  171: *>
  172: *>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
  173: *>     diag(S)*A*diag(S).
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDA
  177: *> \verbatim
  178: *>          LDA is INTEGER
  179: *>     The leading dimension of the array A.  LDA >= max(1,N).
  180: *> \endverbatim
  181: *>
  182: *> \param[in,out] AF
  183: *> \verbatim
  184: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
  185: *>     If FACT = 'F', then AF is an input argument and on entry
  186: *>     contains the block diagonal matrix D and the multipliers
  187: *>     used to obtain the factor U or L from the factorization A =
  188: *>     U*D*U**H or A = L*D*L**H as computed by ZHETRF.
  189: *>
  190: *>     If FACT = 'N', then AF is an output argument and on exit
  191: *>     returns the block diagonal matrix D and the multipliers
  192: *>     used to obtain the factor U or L from the factorization A =
  193: *>     U*D*U**H or A = L*D*L**H.
  194: *> \endverbatim
  195: *>
  196: *> \param[in] LDAF
  197: *> \verbatim
  198: *>          LDAF is INTEGER
  199: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  200: *> \endverbatim
  201: *>
  202: *> \param[in,out] IPIV
  203: *> \verbatim
  204: *>          IPIV is INTEGER array, dimension (N)
  205: *>     If FACT = 'F', then IPIV is an input argument and on entry
  206: *>     contains details of the interchanges and the block
  207: *>     structure of D, as determined by ZHETRF.  If IPIV(k) > 0,
  208: *>     then rows and columns k and IPIV(k) were interchanged and
  209: *>     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
  210: *>     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
  211: *>     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
  212: *>     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
  213: *>     then rows and columns k+1 and -IPIV(k) were interchanged
  214: *>     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  215: *>
  216: *>     If FACT = 'N', then IPIV is an output argument and on exit
  217: *>     contains details of the interchanges and the block
  218: *>     structure of D, as determined by ZHETRF.
  219: *> \endverbatim
  220: *>
  221: *> \param[in,out] EQUED
  222: *> \verbatim
  223: *>          EQUED is CHARACTER*1
  224: *>     Specifies the form of equilibration that was done.
  225: *>       = 'N':  No equilibration (always true if FACT = 'N').
  226: *>       = 'Y':  Both row and column equilibration, i.e., A has been
  227: *>               replaced by diag(S) * A * diag(S).
  228: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
  229: *>     output argument.
  230: *> \endverbatim
  231: *>
  232: *> \param[in,out] S
  233: *> \verbatim
  234: *>          S is DOUBLE PRECISION array, dimension (N)
  235: *>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
  236: *>     the left and right by diag(S).  S is an input argument if FACT =
  237: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
  238: *>     = 'Y', each element of S must be positive.  If S is output, each
  239: *>     element of S is a power of the radix. If S is input, each element
  240: *>     of S should be a power of the radix to ensure a reliable solution
  241: *>     and error estimates. Scaling by powers of the radix does not cause
  242: *>     rounding errors unless the result underflows or overflows.
  243: *>     Rounding errors during scaling lead to refining with a matrix that
  244: *>     is not equivalent to the input matrix, producing error estimates
  245: *>     that may not be reliable.
  246: *> \endverbatim
  247: *>
  248: *> \param[in,out] B
  249: *> \verbatim
  250: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  251: *>     On entry, the N-by-NRHS right hand side matrix B.
  252: *>     On exit,
  253: *>     if EQUED = 'N', B is not modified;
  254: *>     if EQUED = 'Y', B is overwritten by diag(S)*B;
  255: *> \endverbatim
  256: *>
  257: *> \param[in] LDB
  258: *> \verbatim
  259: *>          LDB is INTEGER
  260: *>     The leading dimension of the array B.  LDB >= max(1,N).
  261: *> \endverbatim
  262: *>
  263: *> \param[out] X
  264: *> \verbatim
  265: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  266: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
  267: *>     system of equations.  Note that A and B are modified on exit if
  268: *>     EQUED .ne. 'N', and the solution to the equilibrated system is
  269: *>     inv(diag(S))*X.
  270: *> \endverbatim
  271: *>
  272: *> \param[in] LDX
  273: *> \verbatim
  274: *>          LDX is INTEGER
  275: *>     The leading dimension of the array X.  LDX >= max(1,N).
  276: *> \endverbatim
  277: *>
  278: *> \param[out] RCOND
  279: *> \verbatim
  280: *>          RCOND is DOUBLE PRECISION
  281: *>     Reciprocal scaled condition number.  This is an estimate of the
  282: *>     reciprocal Skeel condition number of the matrix A after
  283: *>     equilibration (if done).  If this is less than the machine
  284: *>     precision (in particular, if it is zero), the matrix is singular
  285: *>     to working precision.  Note that the error may still be small even
  286: *>     if this number is very small and the matrix appears ill-
  287: *>     conditioned.
  288: *> \endverbatim
  289: *>
  290: *> \param[out] RPVGRW
  291: *> \verbatim
  292: *>          RPVGRW is DOUBLE PRECISION
  293: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
  294: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
  295: *>     norm is used.  If this is much less than 1, then the stability of
  296: *>     the LU factorization of the (equilibrated) matrix A could be poor.
  297: *>     This also means that the solution X, estimated condition numbers,
  298: *>     and error bounds could be unreliable. If factorization fails with
  299: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
  300: *>     for the leading INFO columns of A.
  301: *> \endverbatim
  302: *>
  303: *> \param[out] BERR
  304: *> \verbatim
  305: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  306: *>     Componentwise relative backward error.  This is the
  307: *>     componentwise relative backward error of each solution vector X(j)
  308: *>     (i.e., the smallest relative change in any element of A or B that
  309: *>     makes X(j) an exact solution).
  310: *> \endverbatim
  311: *>
  312: *> \param[in] N_ERR_BNDS
  313: *> \verbatim
  314: *>          N_ERR_BNDS is INTEGER
  315: *>     Number of error bounds to return for each right hand side
  316: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  317: *>     ERR_BNDS_COMP below.
  318: *> \endverbatim
  319: *>
  320: *> \param[out] ERR_BNDS_NORM
  321: *> \verbatim
  322: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  323: *>     For each right-hand side, this array contains information about
  324: *>     various error bounds and condition numbers corresponding to the
  325: *>     normwise relative error, which is defined as follows:
  326: *>
  327: *>     Normwise relative error in the ith solution vector:
  328: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  329: *>            ------------------------------
  330: *>                  max_j abs(X(j,i))
  331: *>
  332: *>     The array is indexed by the type of error information as described
  333: *>     below. There currently are up to three pieces of information
  334: *>     returned.
  335: *>
  336: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  337: *>     right-hand side.
  338: *>
  339: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  340: *>     three fields:
  341: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  342: *>              reciprocal condition number is less than the threshold
  343: *>              sqrt(n) * dlamch('Epsilon').
  344: *>
  345: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  346: *>              almost certainly within a factor of 10 of the true error
  347: *>              so long as the next entry is greater than the threshold
  348: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  349: *>              be trusted if the previous boolean is true.
  350: *>
  351: *>     err = 3  Reciprocal condition number: Estimated normwise
  352: *>              reciprocal condition number.  Compared with the threshold
  353: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  354: *>              estimate is "guaranteed". These reciprocal condition
  355: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  356: *>              appropriately scaled matrix Z.
  357: *>              Let Z = S*A, where S scales each row by a power of the
  358: *>              radix so all absolute row sums of Z are approximately 1.
  359: *>
  360: *>     See Lapack Working Note 165 for further details and extra
  361: *>     cautions.
  362: *> \endverbatim
  363: *>
  364: *> \param[out] ERR_BNDS_COMP
  365: *> \verbatim
  366: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  367: *>     For each right-hand side, this array contains information about
  368: *>     various error bounds and condition numbers corresponding to the
  369: *>     componentwise relative error, which is defined as follows:
  370: *>
  371: *>     Componentwise relative error in the ith solution vector:
  372: *>                    abs(XTRUE(j,i) - X(j,i))
  373: *>             max_j ----------------------
  374: *>                         abs(X(j,i))
  375: *>
  376: *>     The array is indexed by the right-hand side i (on which the
  377: *>     componentwise relative error depends), and the type of error
  378: *>     information as described below. There currently are up to three
  379: *>     pieces of information returned for each right-hand side. If
  380: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  381: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  382: *>     the first (:,N_ERR_BNDS) entries are returned.
  383: *>
  384: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  385: *>     right-hand side.
  386: *>
  387: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  388: *>     three fields:
  389: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  390: *>              reciprocal condition number is less than the threshold
  391: *>              sqrt(n) * dlamch('Epsilon').
  392: *>
  393: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  394: *>              almost certainly within a factor of 10 of the true error
  395: *>              so long as the next entry is greater than the threshold
  396: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  397: *>              be trusted if the previous boolean is true.
  398: *>
  399: *>     err = 3  Reciprocal condition number: Estimated componentwise
  400: *>              reciprocal condition number.  Compared with the threshold
  401: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  402: *>              estimate is "guaranteed". These reciprocal condition
  403: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  404: *>              appropriately scaled matrix Z.
  405: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  406: *>              current right-hand side and S scales each row of
  407: *>              A*diag(x) by a power of the radix so all absolute row
  408: *>              sums of Z are approximately 1.
  409: *>
  410: *>     See Lapack Working Note 165 for further details and extra
  411: *>     cautions.
  412: *> \endverbatim
  413: *>
  414: *> \param[in] NPARAMS
  415: *> \verbatim
  416: *>          NPARAMS is INTEGER
  417: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
  418: *>     PARAMS array is never referenced and default values are used.
  419: *> \endverbatim
  420: *>
  421: *> \param[in,out] PARAMS
  422: *> \verbatim
  423: *>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
  424: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
  425: *>     that entry will be filled with default value used for that
  426: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  427: *>     are used for higher-numbered parameters.
  428: *>
  429: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  430: *>            refinement or not.
  431: *>         Default: 1.0D+0
  432: *>            = 0.0:  No refinement is performed, and no error bounds are
  433: *>                    computed.
  434: *>            = 1.0:  Use the extra-precise refinement algorithm.
  435: *>              (other values are reserved for future use)
  436: *>
  437: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  438: *>            computations allowed for refinement.
  439: *>         Default: 10
  440: *>         Aggressive: Set to 100 to permit convergence using approximate
  441: *>                     factorizations or factorizations other than LU. If
  442: *>                     the factorization uses a technique other than
  443: *>                     Gaussian elimination, the guarantees in
  444: *>                     err_bnds_norm and err_bnds_comp may no longer be
  445: *>                     trustworthy.
  446: *>
  447: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  448: *>            will attempt to find a solution with small componentwise
  449: *>            relative error in the double-precision algorithm.  Positive
  450: *>            is true, 0.0 is false.
  451: *>         Default: 1.0 (attempt componentwise convergence)
  452: *> \endverbatim
  453: *>
  454: *> \param[out] WORK
  455: *> \verbatim
  456: *>          WORK is COMPLEX*16 array, dimension (5*N)
  457: *> \endverbatim
  458: *>
  459: *> \param[out] RWORK
  460: *> \verbatim
  461: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  462: *> \endverbatim
  463: *>
  464: *> \param[out] INFO
  465: *> \verbatim
  466: *>          INFO is INTEGER
  467: *>       = 0:  Successful exit. The solution to every right-hand side is
  468: *>         guaranteed.
  469: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  470: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  471: *>         has been completed, but the factor U is exactly singular, so
  472: *>         the solution and error bounds could not be computed. RCOND = 0
  473: *>         is returned.
  474: *>       = N+J: The solution corresponding to the Jth right-hand side is
  475: *>         not guaranteed. The solutions corresponding to other right-
  476: *>         hand sides K with K > J may not be guaranteed as well, but
  477: *>         only the first such right-hand side is reported. If a small
  478: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  479: *>         the Jth right-hand side is the first with a normwise error
  480: *>         bound that is not guaranteed (the smallest J such
  481: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  482: *>         the Jth right-hand side is the first with either a normwise or
  483: *>         componentwise error bound that is not guaranteed (the smallest
  484: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  485: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  486: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  487: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  488: *>         ERR_BNDS_COMP.
  489: *> \endverbatim
  490: *
  491: *  Authors:
  492: *  ========
  493: *
  494: *> \author Univ. of Tennessee
  495: *> \author Univ. of California Berkeley
  496: *> \author Univ. of Colorado Denver
  497: *> \author NAG Ltd.
  498: *
  499: *> \ingroup complex16HEsolve
  500: *
  501: *  =====================================================================
  502:       SUBROUTINE ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
  503:      $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
  504:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  505:      $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
  506: *
  507: *  -- LAPACK driver routine --
  508: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  509: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  510: *
  511: *     .. Scalar Arguments ..
  512:       CHARACTER          EQUED, FACT, UPLO
  513:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
  514:      $                   N_ERR_BNDS
  515:       DOUBLE PRECISION   RCOND, RPVGRW
  516: *     ..
  517: *     .. Array Arguments ..
  518:       INTEGER            IPIV( * )
  519:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  520:      $                   WORK( * ), X( LDX, * )
  521:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
  522:      $                   ERR_BNDS_NORM( NRHS, * ),
  523:      $                   ERR_BNDS_COMP( NRHS, * )
  524: *     ..
  525: *
  526: *  ==================================================================
  527: *
  528: *     .. Parameters ..
  529:       DOUBLE PRECISION   ZERO, ONE
  530:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  531:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  532:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  533:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  534:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  535:      $                   BERR_I = 3 )
  536:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  537:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  538:      $                   PIV_GROWTH_I = 9 )
  539: *     ..
  540: *     .. Local Scalars ..
  541:       LOGICAL            EQUIL, NOFACT, RCEQU
  542:       INTEGER            INFEQU, J
  543:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
  544: *     ..
  545: *     .. External Functions ..
  546:       EXTERNAL           LSAME, DLAMCH,  ZLA_HERPVGRW
  547:       LOGICAL            LSAME
  548:       DOUBLE PRECISION   DLAMCH, ZLA_HERPVGRW
  549: *     ..
  550: *     .. External Subroutines ..
  551:       EXTERNAL           ZHEEQUB, ZHETRF, ZHETRS, ZLACPY,
  552:      $                   ZLAQHE, XERBLA, ZLASCL2, ZHERFSX
  553: *     ..
  554: *     .. Intrinsic Functions ..
  555:       INTRINSIC          MAX, MIN
  556: *     ..
  557: *     .. Executable Statements ..
  558: *
  559:       INFO = 0
  560:       NOFACT = LSAME( FACT, 'N' )
  561:       EQUIL = LSAME( FACT, 'E' )
  562:       SMLNUM = DLAMCH( 'Safe minimum' )
  563:       BIGNUM = ONE / SMLNUM
  564:       IF( NOFACT .OR. EQUIL ) THEN
  565:          EQUED = 'N'
  566:          RCEQU = .FALSE.
  567:       ELSE
  568:          RCEQU = LSAME( EQUED, 'Y' )
  569:       ENDIF
  570: *
  571: *     Default is failure.  If an input parameter is wrong or
  572: *     factorization fails, make everything look horrible.  Only the
  573: *     pivot growth is set here, the rest is initialized in ZHERFSX.
  574: *
  575:       RPVGRW = ZERO
  576: *
  577: *     Test the input parameters.  PARAMS is not tested until ZHERFSX.
  578: *
  579:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
  580:      $     LSAME( FACT, 'F' ) ) THEN
  581:          INFO = -1
  582:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
  583:      $         .NOT.LSAME( UPLO, 'L' ) ) THEN
  584:          INFO = -2
  585:       ELSE IF( N.LT.0 ) THEN
  586:          INFO = -3
  587:       ELSE IF( NRHS.LT.0 ) THEN
  588:          INFO = -4
  589:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  590:          INFO = -6
  591:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  592:          INFO = -8
  593:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  594:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  595:          INFO = -9
  596:       ELSE
  597:          IF ( RCEQU ) THEN
  598:             SMIN = BIGNUM
  599:             SMAX = ZERO
  600:             DO 10 J = 1, N
  601:                SMIN = MIN( SMIN, S( J ) )
  602:                SMAX = MAX( SMAX, S( J ) )
  603:  10         CONTINUE
  604:             IF( SMIN.LE.ZERO ) THEN
  605:                INFO = -10
  606:             ELSE IF( N.GT.0 ) THEN
  607:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  608:             ELSE
  609:                SCOND = ONE
  610:             END IF
  611:          END IF
  612:          IF( INFO.EQ.0 ) THEN
  613:             IF( LDB.LT.MAX( 1, N ) ) THEN
  614:                INFO = -12
  615:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  616:                INFO = -14
  617:             END IF
  618:          END IF
  619:       END IF
  620: *
  621:       IF( INFO.NE.0 ) THEN
  622:          CALL XERBLA( 'ZHESVXX', -INFO )
  623:          RETURN
  624:       END IF
  625: *
  626:       IF( EQUIL ) THEN
  627: *
  628: *     Compute row and column scalings to equilibrate the matrix A.
  629: *
  630:          CALL ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
  631:          IF( INFEQU.EQ.0 ) THEN
  632: *
  633: *     Equilibrate the matrix.
  634: *
  635:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
  636:             RCEQU = LSAME( EQUED, 'Y' )
  637:          END IF
  638:       END IF
  639: *
  640: *     Scale the right-hand side.
  641: *
  642:       IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
  643: *
  644:       IF( NOFACT .OR. EQUIL ) THEN
  645: *
  646: *        Compute the LDL^H or UDU^H factorization of A.
  647: *
  648:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
  649:          CALL ZHETRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
  650: *
  651: *        Return if INFO is non-zero.
  652: *
  653:          IF( INFO.GT.0 ) THEN
  654: *
  655: *           Pivot in column INFO is exactly 0
  656: *           Compute the reciprocal pivot growth factor of the
  657: *           leading rank-deficient INFO columns of A.
  658: *
  659:             IF( N.GT.0 )
  660:      $           RPVGRW = ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
  661:      $           IPIV, RWORK )
  662:             RETURN
  663:          END IF
  664:       END IF
  665: *
  666: *     Compute the reciprocal pivot growth factor RPVGRW.
  667: *
  668:       IF( N.GT.0 )
  669:      $     RPVGRW = ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
  670:      $     RWORK )
  671: *
  672: *     Compute the solution matrix X.
  673: *
  674:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  675:       CALL ZHETRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
  676: *
  677: *     Use iterative refinement to improve the computed solution and
  678: *     compute error bounds and backward error estimates for it.
  679: *
  680:       CALL ZHERFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
  681:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
  682:      $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO )
  683: *
  684: *     Scale solutions.
  685: *
  686:       IF ( RCEQU ) THEN
  687:          CALL ZLASCL2 ( N, NRHS, S, X, LDX )
  688:       END IF
  689: *
  690:       RETURN
  691: *
  692: *     End of ZHESVXX
  693: *
  694:       END

CVSweb interface <joel.bertrand@systella.fr>