Annotation of rpl/lapack/lapack/zhesvxx.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
                      2:      $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
                      3:      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                      4:      $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
                      5: *
                      6: *     -- LAPACK driver routine (version 3.2.2)                          --
                      7: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
                      8: *     -- Jason Riedy of Univ. of California Berkeley.                 --
                      9: *     -- June 2010                                                    --
                     10: *
                     11: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
                     12: *     -- Univ. of California Berkeley and NAG Ltd.                    --
                     13: *
                     14:       IMPLICIT NONE
                     15: *     ..
                     16: *     .. Scalar Arguments ..
                     17:       CHARACTER          EQUED, FACT, UPLO
                     18:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                     19:      $                   N_ERR_BNDS
                     20:       DOUBLE PRECISION   RCOND, RPVGRW
                     21: *     ..
                     22: *     .. Array Arguments ..
                     23:       INTEGER            IPIV( * )
                     24:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     25:      $                   WORK( * ), X( LDX, * )
                     26:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
                     27:      $                   ERR_BNDS_NORM( NRHS, * ),
                     28:      $                   ERR_BNDS_COMP( NRHS, * )
                     29: *     ..
                     30: *
                     31: *     Purpose
                     32: *     =======
                     33: *
                     34: *     ZHESVXX uses the diagonal pivoting factorization to compute the
                     35: *     solution to a complex*16 system of linear equations A * X = B, where
                     36: *     A is an N-by-N symmetric matrix and X and B are N-by-NRHS
                     37: *     matrices.
                     38: *
                     39: *     If requested, both normwise and maximum componentwise error bounds
                     40: *     are returned. ZHESVXX will return a solution with a tiny
                     41: *     guaranteed error (O(eps) where eps is the working machine
                     42: *     precision) unless the matrix is very ill-conditioned, in which
                     43: *     case a warning is returned. Relevant condition numbers also are
                     44: *     calculated and returned.
                     45: *
                     46: *     ZHESVXX accepts user-provided factorizations and equilibration
                     47: *     factors; see the definitions of the FACT and EQUED options.
                     48: *     Solving with refinement and using a factorization from a previous
                     49: *     ZHESVXX call will also produce a solution with either O(eps)
                     50: *     errors or warnings, but we cannot make that claim for general
                     51: *     user-provided factorizations and equilibration factors if they
                     52: *     differ from what ZHESVXX would itself produce.
                     53: *
                     54: *     Description
                     55: *     ===========
                     56: *
                     57: *     The following steps are performed:
                     58: *
                     59: *     1. If FACT = 'E', double precision scaling factors are computed to equilibrate
                     60: *     the system:
                     61: *
                     62: *       diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
                     63: *
                     64: *     Whether or not the system will be equilibrated depends on the
                     65: *     scaling of the matrix A, but if equilibration is used, A is
                     66: *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
                     67: *
                     68: *     2. If FACT = 'N' or 'E', the LU decomposition is used to factor
                     69: *     the matrix A (after equilibration if FACT = 'E') as
                     70: *
                     71: *        A = U * D * U**T,  if UPLO = 'U', or
                     72: *        A = L * D * L**T,  if UPLO = 'L',
                     73: *
                     74: *     where U (or L) is a product of permutation and unit upper (lower)
                     75: *     triangular matrices, and D is symmetric and block diagonal with
                     76: *     1-by-1 and 2-by-2 diagonal blocks.
                     77: *
                     78: *     3. If some D(i,i)=0, so that D is exactly singular, then the
                     79: *     routine returns with INFO = i. Otherwise, the factored form of A
                     80: *     is used to estimate the condition number of the matrix A (see
                     81: *     argument RCOND).  If the reciprocal of the condition number is
                     82: *     less than machine precision, the routine still goes on to solve
                     83: *     for X and compute error bounds as described below.
                     84: *
                     85: *     4. The system of equations is solved for X using the factored form
                     86: *     of A.
                     87: *
                     88: *     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
                     89: *     the routine will use iterative refinement to try to get a small
                     90: *     error and error bounds.  Refinement calculates the residual to at
                     91: *     least twice the working precision.
                     92: *
                     93: *     6. If equilibration was used, the matrix X is premultiplied by
                     94: *     diag(R) so that it solves the original system before
                     95: *     equilibration.
                     96: *
                     97: *     Arguments
                     98: *     =========
                     99: *
                    100: *     Some optional parameters are bundled in the PARAMS array.  These
                    101: *     settings determine how refinement is performed, but often the
                    102: *     defaults are acceptable.  If the defaults are acceptable, users
                    103: *     can pass NPARAMS = 0 which prevents the source code from accessing
                    104: *     the PARAMS argument.
                    105: *
                    106: *     FACT    (input) CHARACTER*1
                    107: *     Specifies whether or not the factored form of the matrix A is
                    108: *     supplied on entry, and if not, whether the matrix A should be
                    109: *     equilibrated before it is factored.
                    110: *       = 'F':  On entry, AF and IPIV contain the factored form of A.
                    111: *               If EQUED is not 'N', the matrix A has been
                    112: *               equilibrated with scaling factors given by S.
                    113: *               A, AF, and IPIV are not modified.
                    114: *       = 'N':  The matrix A will be copied to AF and factored.
                    115: *       = 'E':  The matrix A will be equilibrated if necessary, then
                    116: *               copied to AF and factored.
                    117: *
                    118: *     N       (input) INTEGER
                    119: *     The number of linear equations, i.e., the order of the
                    120: *     matrix A.  N >= 0.
                    121: *
                    122: *     NRHS    (input) INTEGER
                    123: *     The number of right hand sides, i.e., the number of columns
                    124: *     of the matrices B and X.  NRHS >= 0.
                    125: *
                    126: *     A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                    127: *     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                    128: *     upper triangular part of A contains the upper triangular
                    129: *     part of the matrix A, and the strictly lower triangular
                    130: *     part of A is not referenced.  If UPLO = 'L', the leading
                    131: *     N-by-N lower triangular part of A contains the lower
                    132: *     triangular part of the matrix A, and the strictly upper
                    133: *     triangular part of A is not referenced.
                    134: *
                    135: *     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
                    136: *     diag(S)*A*diag(S).
                    137: *
                    138: *     LDA     (input) INTEGER
                    139: *     The leading dimension of the array A.  LDA >= max(1,N).
                    140: *
                    141: *     AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
                    142: *     If FACT = 'F', then AF is an input argument and on entry
                    143: *     contains the block diagonal matrix D and the multipliers
                    144: *     used to obtain the factor U or L from the factorization A =
                    145: *     U*D*U**T or A = L*D*L**T as computed by DSYTRF.
                    146: *
                    147: *     If FACT = 'N', then AF is an output argument and on exit
                    148: *     returns the block diagonal matrix D and the multipliers
                    149: *     used to obtain the factor U or L from the factorization A =
                    150: *     U*D*U**T or A = L*D*L**T.
                    151: *
                    152: *     LDAF    (input) INTEGER
                    153: *     The leading dimension of the array AF.  LDAF >= max(1,N).
                    154: *
                    155: *     IPIV    (input or output) INTEGER array, dimension (N)
                    156: *     If FACT = 'F', then IPIV is an input argument and on entry
                    157: *     contains details of the interchanges and the block
                    158: *     structure of D, as determined by ZHETRF.  If IPIV(k) > 0,
                    159: *     then rows and columns k and IPIV(k) were interchanged and
                    160: *     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
                    161: *     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
                    162: *     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
                    163: *     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
                    164: *     then rows and columns k+1 and -IPIV(k) were interchanged
                    165: *     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    166: *
                    167: *     If FACT = 'N', then IPIV is an output argument and on exit
                    168: *     contains details of the interchanges and the block
                    169: *     structure of D, as determined by ZHETRF.
                    170: *
                    171: *     EQUED   (input or output) CHARACTER*1
                    172: *     Specifies the form of equilibration that was done.
                    173: *       = 'N':  No equilibration (always true if FACT = 'N').
                    174: *       = 'Y':  Both row and column equilibration, i.e., A has been
                    175: *               replaced by diag(S) * A * diag(S).
                    176: *     EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    177: *     output argument.
                    178: *
                    179: *     S       (input or output) DOUBLE PRECISION array, dimension (N)
                    180: *     The scale factors for A.  If EQUED = 'Y', A is multiplied on
                    181: *     the left and right by diag(S).  S is an input argument if FACT =
                    182: *     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
                    183: *     = 'Y', each element of S must be positive.  If S is output, each
                    184: *     element of S is a power of the radix. If S is input, each element
                    185: *     of S should be a power of the radix to ensure a reliable solution
                    186: *     and error estimates. Scaling by powers of the radix does not cause
                    187: *     rounding errors unless the result underflows or overflows.
                    188: *     Rounding errors during scaling lead to refining with a matrix that
                    189: *     is not equivalent to the input matrix, producing error estimates
                    190: *     that may not be reliable.
                    191: *
                    192: *     B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                    193: *     On entry, the N-by-NRHS right hand side matrix B.
                    194: *     On exit,
                    195: *     if EQUED = 'N', B is not modified;
                    196: *     if EQUED = 'Y', B is overwritten by diag(S)*B;
                    197: *
                    198: *     LDB     (input) INTEGER
                    199: *     The leading dimension of the array B.  LDB >= max(1,N).
                    200: *
                    201: *     X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                    202: *     If INFO = 0, the N-by-NRHS solution matrix X to the original
                    203: *     system of equations.  Note that A and B are modified on exit if
                    204: *     EQUED .ne. 'N', and the solution to the equilibrated system is
                    205: *     inv(diag(S))*X.
                    206: *
                    207: *     LDX     (input) INTEGER
                    208: *     The leading dimension of the array X.  LDX >= max(1,N).
                    209: *
                    210: *     RCOND   (output) DOUBLE PRECISION
                    211: *     Reciprocal scaled condition number.  This is an estimate of the
                    212: *     reciprocal Skeel condition number of the matrix A after
                    213: *     equilibration (if done).  If this is less than the machine
                    214: *     precision (in particular, if it is zero), the matrix is singular
                    215: *     to working precision.  Note that the error may still be small even
                    216: *     if this number is very small and the matrix appears ill-
                    217: *     conditioned.
                    218: *
                    219: *     RPVGRW  (output) DOUBLE PRECISION
                    220: *     Reciprocal pivot growth.  On exit, this contains the reciprocal
                    221: *     pivot growth factor norm(A)/norm(U). The "max absolute element"
                    222: *     norm is used.  If this is much less than 1, then the stability of
                    223: *     the LU factorization of the (equilibrated) matrix A could be poor.
                    224: *     This also means that the solution X, estimated condition numbers,
                    225: *     and error bounds could be unreliable. If factorization fails with
                    226: *     0<INFO<=N, then this contains the reciprocal pivot growth factor
                    227: *     for the leading INFO columns of A.
                    228: *
                    229: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    230: *     Componentwise relative backward error.  This is the
                    231: *     componentwise relative backward error of each solution vector X(j)
                    232: *     (i.e., the smallest relative change in any element of A or B that
                    233: *     makes X(j) an exact solution).
                    234: *
                    235: *     N_ERR_BNDS (input) INTEGER
                    236: *     Number of error bounds to return for each right hand side
                    237: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
                    238: *     ERR_BNDS_COMP below.
                    239: *
                    240: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    241: *     For each right-hand side, this array contains information about
                    242: *     various error bounds and condition numbers corresponding to the
                    243: *     normwise relative error, which is defined as follows:
                    244: *
                    245: *     Normwise relative error in the ith solution vector:
                    246: *             max_j (abs(XTRUE(j,i) - X(j,i)))
                    247: *            ------------------------------
                    248: *                  max_j abs(X(j,i))
                    249: *
                    250: *     The array is indexed by the type of error information as described
                    251: *     below. There currently are up to three pieces of information
                    252: *     returned.
                    253: *
                    254: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    255: *     right-hand side.
                    256: *
                    257: *     The second index in ERR_BNDS_NORM(:,err) contains the following
                    258: *     three fields:
                    259: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    260: *              reciprocal condition number is less than the threshold
                    261: *              sqrt(n) * dlamch('Epsilon').
                    262: *
                    263: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    264: *              almost certainly within a factor of 10 of the true error
                    265: *              so long as the next entry is greater than the threshold
                    266: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    267: *              be trusted if the previous boolean is true.
                    268: *
                    269: *     err = 3  Reciprocal condition number: Estimated normwise
                    270: *              reciprocal condition number.  Compared with the threshold
                    271: *              sqrt(n) * dlamch('Epsilon') to determine if the error
                    272: *              estimate is "guaranteed". These reciprocal condition
                    273: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    274: *              appropriately scaled matrix Z.
                    275: *              Let Z = S*A, where S scales each row by a power of the
                    276: *              radix so all absolute row sums of Z are approximately 1.
                    277: *
                    278: *     See Lapack Working Note 165 for further details and extra
                    279: *     cautions.
                    280: *
                    281: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    282: *     For each right-hand side, this array contains information about
                    283: *     various error bounds and condition numbers corresponding to the
                    284: *     componentwise relative error, which is defined as follows:
                    285: *
                    286: *     Componentwise relative error in the ith solution vector:
                    287: *                    abs(XTRUE(j,i) - X(j,i))
                    288: *             max_j ----------------------
                    289: *                         abs(X(j,i))
                    290: *
                    291: *     The array is indexed by the right-hand side i (on which the
                    292: *     componentwise relative error depends), and the type of error
                    293: *     information as described below. There currently are up to three
                    294: *     pieces of information returned for each right-hand side. If
                    295: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    296: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    297: *     the first (:,N_ERR_BNDS) entries are returned.
                    298: *
                    299: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    300: *     right-hand side.
                    301: *
                    302: *     The second index in ERR_BNDS_COMP(:,err) contains the following
                    303: *     three fields:
                    304: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    305: *              reciprocal condition number is less than the threshold
                    306: *              sqrt(n) * dlamch('Epsilon').
                    307: *
                    308: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    309: *              almost certainly within a factor of 10 of the true error
                    310: *              so long as the next entry is greater than the threshold
                    311: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    312: *              be trusted if the previous boolean is true.
                    313: *
                    314: *     err = 3  Reciprocal condition number: Estimated componentwise
                    315: *              reciprocal condition number.  Compared with the threshold
                    316: *              sqrt(n) * dlamch('Epsilon') to determine if the error
                    317: *              estimate is "guaranteed". These reciprocal condition
                    318: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    319: *              appropriately scaled matrix Z.
                    320: *              Let Z = S*(A*diag(x)), where x is the solution for the
                    321: *              current right-hand side and S scales each row of
                    322: *              A*diag(x) by a power of the radix so all absolute row
                    323: *              sums of Z are approximately 1.
                    324: *
                    325: *     See Lapack Working Note 165 for further details and extra
                    326: *     cautions.
                    327: *
                    328: *     NPARAMS (input) INTEGER
                    329: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
                    330: *     PARAMS array is never referenced and default values are used.
                    331: *
                    332: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
                    333: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
                    334: *     that entry will be filled with default value used for that
                    335: *     parameter.  Only positions up to NPARAMS are accessed; defaults
                    336: *     are used for higher-numbered parameters.
                    337: *
                    338: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
                    339: *            refinement or not.
                    340: *         Default: 1.0D+0
                    341: *            = 0.0 : No refinement is performed, and no error bounds are
                    342: *                    computed.
                    343: *            = 1.0 : Use the extra-precise refinement algorithm.
                    344: *              (other values are reserved for future use)
                    345: *
                    346: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
                    347: *            computations allowed for refinement.
                    348: *         Default: 10
                    349: *         Aggressive: Set to 100 to permit convergence using approximate
                    350: *                     factorizations or factorizations other than LU. If
                    351: *                     the factorization uses a technique other than
                    352: *                     Gaussian elimination, the guarantees in
                    353: *                     err_bnds_norm and err_bnds_comp may no longer be
                    354: *                     trustworthy.
                    355: *
                    356: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
                    357: *            will attempt to find a solution with small componentwise
                    358: *            relative error in the double-precision algorithm.  Positive
                    359: *            is true, 0.0 is false.
                    360: *         Default: 1.0 (attempt componentwise convergence)
                    361: *
                    362: *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    363: *
                    364: *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
                    365: *
                    366: *     INFO    (output) INTEGER
                    367: *       = 0:  Successful exit. The solution to every right-hand side is
                    368: *         guaranteed.
                    369: *       < 0:  If INFO = -i, the i-th argument had an illegal value
                    370: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
                    371: *         has been completed, but the factor U is exactly singular, so
                    372: *         the solution and error bounds could not be computed. RCOND = 0
                    373: *         is returned.
                    374: *       = N+J: The solution corresponding to the Jth right-hand side is
                    375: *         not guaranteed. The solutions corresponding to other right-
                    376: *         hand sides K with K > J may not be guaranteed as well, but
                    377: *         only the first such right-hand side is reported. If a small
                    378: *         componentwise error is not requested (PARAMS(3) = 0.0) then
                    379: *         the Jth right-hand side is the first with a normwise error
                    380: *         bound that is not guaranteed (the smallest J such
                    381: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
                    382: *         the Jth right-hand side is the first with either a normwise or
                    383: *         componentwise error bound that is not guaranteed (the smallest
                    384: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
                    385: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
                    386: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
                    387: *         about all of the right-hand sides check ERR_BNDS_NORM or
                    388: *         ERR_BNDS_COMP.
                    389: *
                    390: *     ==================================================================
                    391: *
                    392: *     .. Parameters ..
                    393:       DOUBLE PRECISION   ZERO, ONE
                    394:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    395:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    396:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    397:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    398:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    399:      $                   BERR_I = 3 )
                    400:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    401:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    402:      $                   PIV_GROWTH_I = 9 )
                    403: *     ..
                    404: *     .. Local Scalars ..
                    405:       LOGICAL            EQUIL, NOFACT, RCEQU
                    406:       INTEGER            INFEQU, J
                    407:       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
                    408: *     ..
                    409: *     .. External Functions ..
                    410:       EXTERNAL           LSAME, DLAMCH,  ZLA_HERPVGRW
                    411:       LOGICAL            LSAME
                    412:       DOUBLE PRECISION   DLAMCH, ZLA_HERPVGRW
                    413: *     ..
                    414: *     .. External Subroutines ..
                    415:       EXTERNAL           ZHECON, ZHEEQUB, ZHETRF, ZHETRS, ZLACPY,
                    416:      $                   ZLAQHE, XERBLA, ZLASCL2, ZHERFSX
                    417: *     ..
                    418: *     .. Intrinsic Functions ..
                    419:       INTRINSIC          MAX, MIN
                    420: *     ..
                    421: *     .. Executable Statements ..
                    422: *
                    423:       INFO = 0
                    424:       NOFACT = LSAME( FACT, 'N' )
                    425:       EQUIL = LSAME( FACT, 'E' )
                    426:       SMLNUM = DLAMCH( 'Safe minimum' )
                    427:       BIGNUM = ONE / SMLNUM
                    428:       IF( NOFACT .OR. EQUIL ) THEN
                    429:          EQUED = 'N'
                    430:          RCEQU = .FALSE.
                    431:       ELSE
                    432:          RCEQU = LSAME( EQUED, 'Y' )
                    433:       ENDIF
                    434: *
                    435: *     Default is failure.  If an input parameter is wrong or
                    436: *     factorization fails, make everything look horrible.  Only the
                    437: *     pivot growth is set here, the rest is initialized in ZHERFSX.
                    438: *
                    439:       RPVGRW = ZERO
                    440: *
                    441: *     Test the input parameters.  PARAMS is not tested until ZHERFSX.
                    442: *
                    443:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
                    444:      $     LSAME( FACT, 'F' ) ) THEN
                    445:          INFO = -1
                    446:       ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
                    447:      $         .NOT.LSAME( UPLO, 'L' ) ) THEN
                    448:          INFO = -2
                    449:       ELSE IF( N.LT.0 ) THEN
                    450:          INFO = -3
                    451:       ELSE IF( NRHS.LT.0 ) THEN
                    452:          INFO = -4
                    453:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    454:          INFO = -6
                    455:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    456:          INFO = -8
                    457:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    458:      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    459:          INFO = -9
                    460:       ELSE
                    461:          IF ( RCEQU ) THEN
                    462:             SMIN = BIGNUM
                    463:             SMAX = ZERO
                    464:             DO 10 J = 1, N
                    465:                SMIN = MIN( SMIN, S( J ) )
                    466:                SMAX = MAX( SMAX, S( J ) )
                    467:  10         CONTINUE
                    468:             IF( SMIN.LE.ZERO ) THEN
                    469:                INFO = -10
                    470:             ELSE IF( N.GT.0 ) THEN
                    471:                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
                    472:             ELSE
                    473:                SCOND = ONE
                    474:             END IF
                    475:          END IF
                    476:          IF( INFO.EQ.0 ) THEN
                    477:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    478:                INFO = -12
                    479:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    480:                INFO = -14
                    481:             END IF
                    482:          END IF
                    483:       END IF
                    484: *
                    485:       IF( INFO.NE.0 ) THEN
                    486:          CALL XERBLA( 'ZHESVXX', -INFO )
                    487:          RETURN
                    488:       END IF
                    489: *
                    490:       IF( EQUIL ) THEN
                    491: *
                    492: *     Compute row and column scalings to equilibrate the matrix A.
                    493: *
                    494:          CALL ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
                    495:          IF( INFEQU.EQ.0 ) THEN
                    496: *
                    497: *     Equilibrate the matrix.
                    498: *
                    499:             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
                    500:             RCEQU = LSAME( EQUED, 'Y' )
                    501:          END IF
                    502:       END IF
                    503: *
                    504: *     Scale the right-hand side.
                    505: *
                    506:       IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
                    507: *
                    508:       IF( NOFACT .OR. EQUIL ) THEN
                    509: *
                    510: *        Compute the LDL^T or UDU^T factorization of A.
                    511: *
                    512:          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
                    513:          CALL ZHETRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
                    514: *
                    515: *        Return if INFO is non-zero.
                    516: *
                    517:          IF( INFO.GT.0 ) THEN
                    518: *
                    519: *           Pivot in column INFO is exactly 0
                    520: *           Compute the reciprocal pivot growth factor of the
                    521: *           leading rank-deficient INFO columns of A.
                    522: *
                    523:             IF( N.GT.0 )
                    524:      $           RPVGRW = ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
                    525:      $           IPIV, RWORK )
                    526:             RETURN
                    527:          END IF
                    528:       END IF
                    529: *
                    530: *     Compute the reciprocal pivot growth factor RPVGRW.
                    531: *
                    532:       IF( N.GT.0 )
                    533:      $     RPVGRW = ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
                    534:      $     RWORK )
                    535: *
                    536: *     Compute the solution matrix X.
                    537: *
                    538:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    539:       CALL ZHETRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
                    540: *
                    541: *     Use iterative refinement to improve the computed solution and
                    542: *     compute error bounds and backward error estimates for it.
                    543: *
                    544:       CALL ZHERFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
                    545:      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
                    546:      $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO )
                    547: *
                    548: *     Scale solutions.
                    549: *
                    550:       IF ( RCEQU ) THEN
                    551:          CALL ZLASCL2 ( N, NRHS, S, X, LDX )
                    552:       END IF
                    553: *
                    554:       RETURN
                    555: *
                    556: *     End of ZHESVXX
                    557: *
                    558:       END

CVSweb interface <joel.bertrand@systella.fr>