Annotation of rpl/lapack/lapack/zhesv.f, revision 1.19

1.10      bertrand    1: *> \brief <b> ZHESV computes the solution to system of linear equations A * X = B for HE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZHESV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhesv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhesv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhesv.f">
1.10      bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHESV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
                     22: *                         LWORK, INFO )
1.16      bertrand   23: *
1.10      bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDA, LDB, LWORK, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * )
                     30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     31: *       ..
1.16      bertrand   32: *
1.10      bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZHESV computes the solution to a complex system of linear equations
                     40: *>    A * X = B,
                     41: *> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
                     42: *> matrices.
                     43: *>
                     44: *> The diagonal pivoting method is used to factor A as
                     45: *>    A = U * D * U**H,  if UPLO = 'U', or
                     46: *>    A = L * D * L**H,  if UPLO = 'L',
                     47: *> where U (or L) is a product of permutation and unit upper (lower)
                     48: *> triangular matrices, and D is Hermitian and block diagonal with
                     49: *> 1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
                     50: *> used to solve the system of equations A * X = B.
                     51: *> \endverbatim
                     52: *
                     53: *  Arguments:
                     54: *  ==========
                     55: *
                     56: *> \param[in] UPLO
                     57: *> \verbatim
                     58: *>          UPLO is CHARACTER*1
                     59: *>          = 'U':  Upper triangle of A is stored;
                     60: *>          = 'L':  Lower triangle of A is stored.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] N
                     64: *> \verbatim
                     65: *>          N is INTEGER
                     66: *>          The number of linear equations, i.e., the order of the
                     67: *>          matrix A.  N >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] NRHS
                     71: *> \verbatim
                     72: *>          NRHS is INTEGER
                     73: *>          The number of right hand sides, i.e., the number of columns
                     74: *>          of the matrix B.  NRHS >= 0.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in,out] A
                     78: *> \verbatim
                     79: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     80: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     81: *>          N-by-N upper triangular part of A contains the upper
                     82: *>          triangular part of the matrix A, and the strictly lower
                     83: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     84: *>          leading N-by-N lower triangular part of A contains the lower
                     85: *>          triangular part of the matrix A, and the strictly upper
                     86: *>          triangular part of A is not referenced.
                     87: *>
                     88: *>          On exit, if INFO = 0, the block diagonal matrix D and the
                     89: *>          multipliers used to obtain the factor U or L from the
                     90: *>          factorization A = U*D*U**H or A = L*D*L**H as computed by
                     91: *>          ZHETRF.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] LDA
                     95: *> \verbatim
                     96: *>          LDA is INTEGER
                     97: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[out] IPIV
                    101: *> \verbatim
                    102: *>          IPIV is INTEGER array, dimension (N)
                    103: *>          Details of the interchanges and the block structure of D, as
                    104: *>          determined by ZHETRF.  If IPIV(k) > 0, then rows and columns
                    105: *>          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
                    106: *>          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
                    107: *>          then rows and columns k-1 and -IPIV(k) were interchanged and
                    108: *>          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
                    109: *>          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
                    110: *>          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
                    111: *>          diagonal block.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in,out] B
                    115: *> \verbatim
                    116: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    117: *>          On entry, the N-by-NRHS right hand side matrix B.
                    118: *>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] LDB
                    122: *> \verbatim
                    123: *>          LDB is INTEGER
                    124: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[out] WORK
                    128: *> \verbatim
                    129: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    130: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in] LWORK
                    134: *> \verbatim
                    135: *>          LWORK is INTEGER
                    136: *>          The length of WORK.  LWORK >= 1, and for best performance
                    137: *>          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
                    138: *>          ZHETRF.
                    139: *>          for LWORK < N, TRS will be done with Level BLAS 2
                    140: *>          for LWORK >= N, TRS will be done with Level BLAS 3
                    141: *>
                    142: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    143: *>          only calculates the optimal size of the WORK array, returns
                    144: *>          this value as the first entry of the WORK array, and no error
                    145: *>          message related to LWORK is issued by XERBLA.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] INFO
                    149: *> \verbatim
                    150: *>          INFO is INTEGER
                    151: *>          = 0: successful exit
                    152: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    153: *>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
                    154: *>               has been completed, but the block diagonal matrix D is
                    155: *>               exactly singular, so the solution could not be computed.
                    156: *> \endverbatim
                    157: *
                    158: *  Authors:
                    159: *  ========
                    160: *
1.16      bertrand  161: *> \author Univ. of Tennessee
                    162: *> \author Univ. of California Berkeley
                    163: *> \author Univ. of Colorado Denver
                    164: *> \author NAG Ltd.
1.10      bertrand  165: *
                    166: *> \ingroup complex16HEsolve
                    167: *
                    168: *  =====================================================================
1.1       bertrand  169:       SUBROUTINE ZHESV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
                    170:      $                  LWORK, INFO )
                    171: *
1.19    ! bertrand  172: *  -- LAPACK driver routine --
1.1       bertrand  173: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    174: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    175: *
                    176: *     .. Scalar Arguments ..
                    177:       CHARACTER          UPLO
                    178:       INTEGER            INFO, LDA, LDB, LWORK, N, NRHS
                    179: *     ..
                    180: *     .. Array Arguments ..
                    181:       INTEGER            IPIV( * )
                    182:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    183: *     ..
                    184: *
                    185: *  =====================================================================
                    186: *
                    187: *     .. Local Scalars ..
                    188:       LOGICAL            LQUERY
                    189:       INTEGER            LWKOPT, NB
                    190: *     ..
                    191: *     .. External Functions ..
                    192:       LOGICAL            LSAME
                    193:       INTEGER            ILAENV
                    194:       EXTERNAL           LSAME, ILAENV
                    195: *     ..
                    196: *     .. External Subroutines ..
1.9       bertrand  197:       EXTERNAL           XERBLA, ZHETRF, ZHETRS, ZHETRS2
1.1       bertrand  198: *     ..
                    199: *     .. Intrinsic Functions ..
                    200:       INTRINSIC          MAX
                    201: *     ..
                    202: *     .. Executable Statements ..
                    203: *
                    204: *     Test the input parameters.
                    205: *
                    206:       INFO = 0
                    207:       LQUERY = ( LWORK.EQ.-1 )
                    208:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    209:          INFO = -1
                    210:       ELSE IF( N.LT.0 ) THEN
                    211:          INFO = -2
                    212:       ELSE IF( NRHS.LT.0 ) THEN
                    213:          INFO = -3
                    214:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    215:          INFO = -5
                    216:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    217:          INFO = -8
                    218:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    219:          INFO = -10
                    220:       END IF
                    221: *
                    222:       IF( INFO.EQ.0 ) THEN
                    223:          IF( N.EQ.0 ) THEN
                    224:             LWKOPT = 1
                    225:          ELSE
                    226:             NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
                    227:             LWKOPT = N*NB
                    228:          END IF
                    229:          WORK( 1 ) = LWKOPT
                    230:       END IF
                    231: *
                    232:       IF( INFO.NE.0 ) THEN
                    233:          CALL XERBLA( 'ZHESV ', -INFO )
                    234:          RETURN
                    235:       ELSE IF( LQUERY ) THEN
                    236:          RETURN
                    237:       END IF
                    238: *
1.9       bertrand  239: *     Compute the factorization A = U*D*U**H or A = L*D*L**H.
1.1       bertrand  240: *
                    241:       CALL ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    242:       IF( INFO.EQ.0 ) THEN
                    243: *
                    244: *        Solve the system A*X = B, overwriting B with X.
                    245: *
1.9       bertrand  246:          IF ( LWORK.LT.N ) THEN
                    247: *
                    248: *        Solve with TRS ( Use Level BLAS 2)
                    249: *
                    250:             CALL ZHETRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
                    251: *
                    252:          ELSE
                    253: *
                    254: *        Solve with TRS2 ( Use Level BLAS 3)
                    255: *
                    256:             CALL ZHETRS2( UPLO,N,NRHS,A,LDA,IPIV,B,LDB,WORK,INFO )
                    257: *
                    258:          END IF
1.1       bertrand  259: *
                    260:       END IF
                    261: *
                    262:       WORK( 1 ) = LWKOPT
                    263: *
                    264:       RETURN
                    265: *
                    266: *     End of ZHESV
                    267: *
                    268:       END

CVSweb interface <joel.bertrand@systella.fr>