Annotation of rpl/lapack/lapack/zhesv.f, revision 1.10

1.10    ! bertrand    1: *> \brief <b> ZHESV computes the solution to system of linear equations A * X = B for HE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHESV + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhesv.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhesv.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhesv.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHESV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
        !            22: *                         LWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          UPLO
        !            26: *       INTEGER            INFO, LDA, LDB, LWORK, N, NRHS
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IPIV( * )
        !            30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> ZHESV computes the solution to a complex system of linear equations
        !            40: *>    A * X = B,
        !            41: *> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
        !            42: *> matrices.
        !            43: *>
        !            44: *> The diagonal pivoting method is used to factor A as
        !            45: *>    A = U * D * U**H,  if UPLO = 'U', or
        !            46: *>    A = L * D * L**H,  if UPLO = 'L',
        !            47: *> where U (or L) is a product of permutation and unit upper (lower)
        !            48: *> triangular matrices, and D is Hermitian and block diagonal with
        !            49: *> 1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
        !            50: *> used to solve the system of equations A * X = B.
        !            51: *> \endverbatim
        !            52: *
        !            53: *  Arguments:
        !            54: *  ==========
        !            55: *
        !            56: *> \param[in] UPLO
        !            57: *> \verbatim
        !            58: *>          UPLO is CHARACTER*1
        !            59: *>          = 'U':  Upper triangle of A is stored;
        !            60: *>          = 'L':  Lower triangle of A is stored.
        !            61: *> \endverbatim
        !            62: *>
        !            63: *> \param[in] N
        !            64: *> \verbatim
        !            65: *>          N is INTEGER
        !            66: *>          The number of linear equations, i.e., the order of the
        !            67: *>          matrix A.  N >= 0.
        !            68: *> \endverbatim
        !            69: *>
        !            70: *> \param[in] NRHS
        !            71: *> \verbatim
        !            72: *>          NRHS is INTEGER
        !            73: *>          The number of right hand sides, i.e., the number of columns
        !            74: *>          of the matrix B.  NRHS >= 0.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in,out] A
        !            78: *> \verbatim
        !            79: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            80: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
        !            81: *>          N-by-N upper triangular part of A contains the upper
        !            82: *>          triangular part of the matrix A, and the strictly lower
        !            83: *>          triangular part of A is not referenced.  If UPLO = 'L', the
        !            84: *>          leading N-by-N lower triangular part of A contains the lower
        !            85: *>          triangular part of the matrix A, and the strictly upper
        !            86: *>          triangular part of A is not referenced.
        !            87: *>
        !            88: *>          On exit, if INFO = 0, the block diagonal matrix D and the
        !            89: *>          multipliers used to obtain the factor U or L from the
        !            90: *>          factorization A = U*D*U**H or A = L*D*L**H as computed by
        !            91: *>          ZHETRF.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in] LDA
        !            95: *> \verbatim
        !            96: *>          LDA is INTEGER
        !            97: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[out] IPIV
        !           101: *> \verbatim
        !           102: *>          IPIV is INTEGER array, dimension (N)
        !           103: *>          Details of the interchanges and the block structure of D, as
        !           104: *>          determined by ZHETRF.  If IPIV(k) > 0, then rows and columns
        !           105: *>          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
        !           106: *>          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
        !           107: *>          then rows and columns k-1 and -IPIV(k) were interchanged and
        !           108: *>          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
        !           109: *>          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
        !           110: *>          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
        !           111: *>          diagonal block.
        !           112: *> \endverbatim
        !           113: *>
        !           114: *> \param[in,out] B
        !           115: *> \verbatim
        !           116: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           117: *>          On entry, the N-by-NRHS right hand side matrix B.
        !           118: *>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
        !           119: *> \endverbatim
        !           120: *>
        !           121: *> \param[in] LDB
        !           122: *> \verbatim
        !           123: *>          LDB is INTEGER
        !           124: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[out] WORK
        !           128: *> \verbatim
        !           129: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           130: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in] LWORK
        !           134: *> \verbatim
        !           135: *>          LWORK is INTEGER
        !           136: *>          The length of WORK.  LWORK >= 1, and for best performance
        !           137: *>          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
        !           138: *>          ZHETRF.
        !           139: *>          for LWORK < N, TRS will be done with Level BLAS 2
        !           140: *>          for LWORK >= N, TRS will be done with Level BLAS 3
        !           141: *>
        !           142: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           143: *>          only calculates the optimal size of the WORK array, returns
        !           144: *>          this value as the first entry of the WORK array, and no error
        !           145: *>          message related to LWORK is issued by XERBLA.
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[out] INFO
        !           149: *> \verbatim
        !           150: *>          INFO is INTEGER
        !           151: *>          = 0: successful exit
        !           152: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !           153: *>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
        !           154: *>               has been completed, but the block diagonal matrix D is
        !           155: *>               exactly singular, so the solution could not be computed.
        !           156: *> \endverbatim
        !           157: *
        !           158: *  Authors:
        !           159: *  ========
        !           160: *
        !           161: *> \author Univ. of Tennessee 
        !           162: *> \author Univ. of California Berkeley 
        !           163: *> \author Univ. of Colorado Denver 
        !           164: *> \author NAG Ltd. 
        !           165: *
        !           166: *> \date November 2011
        !           167: *
        !           168: *> \ingroup complex16HEsolve
        !           169: *
        !           170: *  =====================================================================
1.1       bertrand  171:       SUBROUTINE ZHESV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
                    172:      $                  LWORK, INFO )
                    173: *
1.10    ! bertrand  174: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  175: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    176: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  177: *     November 2011
1.1       bertrand  178: *
                    179: *     .. Scalar Arguments ..
                    180:       CHARACTER          UPLO
                    181:       INTEGER            INFO, LDA, LDB, LWORK, N, NRHS
                    182: *     ..
                    183: *     .. Array Arguments ..
                    184:       INTEGER            IPIV( * )
                    185:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    186: *     ..
                    187: *
                    188: *  =====================================================================
                    189: *
                    190: *     .. Local Scalars ..
                    191:       LOGICAL            LQUERY
                    192:       INTEGER            LWKOPT, NB
                    193: *     ..
                    194: *     .. External Functions ..
                    195:       LOGICAL            LSAME
                    196:       INTEGER            ILAENV
                    197:       EXTERNAL           LSAME, ILAENV
                    198: *     ..
                    199: *     .. External Subroutines ..
1.9       bertrand  200:       EXTERNAL           XERBLA, ZHETRF, ZHETRS, ZHETRS2
1.1       bertrand  201: *     ..
                    202: *     .. Intrinsic Functions ..
                    203:       INTRINSIC          MAX
                    204: *     ..
                    205: *     .. Executable Statements ..
                    206: *
                    207: *     Test the input parameters.
                    208: *
                    209:       INFO = 0
                    210:       LQUERY = ( LWORK.EQ.-1 )
                    211:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    212:          INFO = -1
                    213:       ELSE IF( N.LT.0 ) THEN
                    214:          INFO = -2
                    215:       ELSE IF( NRHS.LT.0 ) THEN
                    216:          INFO = -3
                    217:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    218:          INFO = -5
                    219:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    220:          INFO = -8
                    221:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    222:          INFO = -10
                    223:       END IF
                    224: *
                    225:       IF( INFO.EQ.0 ) THEN
                    226:          IF( N.EQ.0 ) THEN
                    227:             LWKOPT = 1
                    228:          ELSE
                    229:             NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
                    230:             LWKOPT = N*NB
                    231:          END IF
                    232:          WORK( 1 ) = LWKOPT
                    233:       END IF
                    234: *
                    235:       IF( INFO.NE.0 ) THEN
                    236:          CALL XERBLA( 'ZHESV ', -INFO )
                    237:          RETURN
                    238:       ELSE IF( LQUERY ) THEN
                    239:          RETURN
                    240:       END IF
                    241: *
1.9       bertrand  242: *     Compute the factorization A = U*D*U**H or A = L*D*L**H.
1.1       bertrand  243: *
                    244:       CALL ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                    245:       IF( INFO.EQ.0 ) THEN
                    246: *
                    247: *        Solve the system A*X = B, overwriting B with X.
                    248: *
1.9       bertrand  249:          IF ( LWORK.LT.N ) THEN
                    250: *
                    251: *        Solve with TRS ( Use Level BLAS 2)
                    252: *
                    253:             CALL ZHETRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
                    254: *
                    255:          ELSE
                    256: *
                    257: *        Solve with TRS2 ( Use Level BLAS 3)
                    258: *
                    259:             CALL ZHETRS2( UPLO,N,NRHS,A,LDA,IPIV,B,LDB,WORK,INFO )
                    260: *
                    261:          END IF
1.1       bertrand  262: *
                    263:       END IF
                    264: *
                    265:       WORK( 1 ) = LWKOPT
                    266: *
                    267:       RETURN
                    268: *
                    269: *     End of ZHESV
                    270: *
                    271:       END

CVSweb interface <joel.bertrand@systella.fr>