Annotation of rpl/lapack/lapack/zherfsx.f, revision 1.16

1.5       bertrand    1: *> \brief \b ZHERFSX
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.12      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.5       bertrand    7: *
                      8: *> \htmlonly
1.12      bertrand    9: *> Download ZHERFSX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zherfsx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zherfsx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zherfsx.f">
1.5       bertrand   15: *> [TXT]</a>
1.12      bertrand   16: *> \endhtmlonly
1.5       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHERFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
                     22: *                           S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
                     23: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                     24: *                           WORK, RWORK, INFO )
1.12      bertrand   25: *
1.5       bertrand   26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          UPLO, EQUED
                     28: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                     29: *      $                   N_ERR_BNDS
                     30: *       DOUBLE PRECISION   RCOND
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       INTEGER            IPIV( * )
                     34: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     35: *      $                   X( LDX, * ), WORK( * )
                     36: *       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
                     37: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     38: *      $                   ERR_BNDS_COMP( NRHS, * )
1.12      bertrand   39: *
1.5       bertrand   40: *
                     41: *> \par Purpose:
                     42: *  =============
                     43: *>
                     44: *> \verbatim
                     45: *>
                     46: *>    ZHERFSX improves the computed solution to a system of linear
                     47: *>    equations when the coefficient matrix is Hermitian indefinite, and
                     48: *>    provides error bounds and backward error estimates for the
                     49: *>    solution.  In addition to normwise error bound, the code provides
                     50: *>    maximum componentwise error bound if possible.  See comments for
                     51: *>    ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
                     52: *>
                     53: *>    The original system of linear equations may have been equilibrated
                     54: *>    before calling this routine, as described by arguments EQUED and S
                     55: *>    below. In this case, the solution and error bounds returned are
                     56: *>    for the original unequilibrated system.
                     57: *> \endverbatim
                     58: *
                     59: *  Arguments:
                     60: *  ==========
                     61: *
                     62: *> \verbatim
                     63: *>     Some optional parameters are bundled in the PARAMS array.  These
                     64: *>     settings determine how refinement is performed, but often the
                     65: *>     defaults are acceptable.  If the defaults are acceptable, users
                     66: *>     can pass NPARAMS = 0 which prevents the source code from accessing
                     67: *>     the PARAMS argument.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] UPLO
                     71: *> \verbatim
                     72: *>          UPLO is CHARACTER*1
                     73: *>       = 'U':  Upper triangle of A is stored;
                     74: *>       = 'L':  Lower triangle of A is stored.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] EQUED
                     78: *> \verbatim
                     79: *>          EQUED is CHARACTER*1
                     80: *>     Specifies the form of equilibration that was done to A
                     81: *>     before calling this routine. This is needed to compute
                     82: *>     the solution and error bounds correctly.
                     83: *>       = 'N':  No equilibration
                     84: *>       = 'Y':  Both row and column equilibration, i.e., A has been
                     85: *>               replaced by diag(S) * A * diag(S).
                     86: *>               The right hand side B has been changed accordingly.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] N
                     90: *> \verbatim
                     91: *>          N is INTEGER
                     92: *>     The order of the matrix A.  N >= 0.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] NRHS
                     96: *> \verbatim
                     97: *>          NRHS is INTEGER
                     98: *>     The number of right hand sides, i.e., the number of columns
                     99: *>     of the matrices B and X.  NRHS >= 0.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] A
                    103: *> \verbatim
                    104: *>          A is COMPLEX*16 array, dimension (LDA,N)
1.15      bertrand  105: *>     The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
1.5       bertrand  106: *>     upper triangular part of A contains the upper triangular
                    107: *>     part of the matrix A, and the strictly lower triangular
                    108: *>     part of A is not referenced.  If UPLO = 'L', the leading
                    109: *>     N-by-N lower triangular part of A contains the lower
                    110: *>     triangular part of the matrix A, and the strictly upper
                    111: *>     triangular part of A is not referenced.
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] LDA
                    115: *> \verbatim
                    116: *>          LDA is INTEGER
                    117: *>     The leading dimension of the array A.  LDA >= max(1,N).
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] AF
                    121: *> \verbatim
                    122: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
                    123: *>     The factored form of the matrix A.  AF contains the block
                    124: *>     diagonal matrix D and the multipliers used to obtain the
1.16    ! bertrand  125: *>     factor U or L from the factorization A = U*D*U**H or A =
        !           126: *>     L*D*L**H as computed by ZHETRF.
1.5       bertrand  127: *> \endverbatim
                    128: *>
                    129: *> \param[in] LDAF
                    130: *> \verbatim
                    131: *>          LDAF is INTEGER
                    132: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in] IPIV
                    136: *> \verbatim
                    137: *>          IPIV is INTEGER array, dimension (N)
                    138: *>     Details of the interchanges and the block structure of D
1.16    ! bertrand  139: *>     as determined by ZHETRF.
1.5       bertrand  140: *> \endverbatim
                    141: *>
                    142: *> \param[in,out] S
                    143: *> \verbatim
1.7       bertrand  144: *>          S is DOUBLE PRECISION array, dimension (N)
1.5       bertrand  145: *>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
                    146: *>     the left and right by diag(S).  S is an input argument if FACT =
                    147: *>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
                    148: *>     = 'Y', each element of S must be positive.  If S is output, each
                    149: *>     element of S is a power of the radix. If S is input, each element
                    150: *>     of S should be a power of the radix to ensure a reliable solution
                    151: *>     and error estimates. Scaling by powers of the radix does not cause
                    152: *>     rounding errors unless the result underflows or overflows.
                    153: *>     Rounding errors during scaling lead to refining with a matrix that
                    154: *>     is not equivalent to the input matrix, producing error estimates
                    155: *>     that may not be reliable.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in] B
                    159: *> \verbatim
                    160: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    161: *>     The right hand side matrix B.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[in] LDB
                    165: *> \verbatim
                    166: *>          LDB is INTEGER
                    167: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[in,out] X
                    171: *> \verbatim
                    172: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
1.16    ! bertrand  173: *>     On entry, the solution matrix X, as computed by ZHETRS.
1.5       bertrand  174: *>     On exit, the improved solution matrix X.
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[in] LDX
                    178: *> \verbatim
                    179: *>          LDX is INTEGER
                    180: *>     The leading dimension of the array X.  LDX >= max(1,N).
                    181: *> \endverbatim
                    182: *>
                    183: *> \param[out] RCOND
                    184: *> \verbatim
                    185: *>          RCOND is DOUBLE PRECISION
                    186: *>     Reciprocal scaled condition number.  This is an estimate of the
                    187: *>     reciprocal Skeel condition number of the matrix A after
                    188: *>     equilibration (if done).  If this is less than the machine
                    189: *>     precision (in particular, if it is zero), the matrix is singular
                    190: *>     to working precision.  Note that the error may still be small even
                    191: *>     if this number is very small and the matrix appears ill-
                    192: *>     conditioned.
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[out] BERR
                    196: *> \verbatim
                    197: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    198: *>     Componentwise relative backward error.  This is the
                    199: *>     componentwise relative backward error of each solution vector X(j)
                    200: *>     (i.e., the smallest relative change in any element of A or B that
                    201: *>     makes X(j) an exact solution).
                    202: *> \endverbatim
                    203: *>
                    204: *> \param[in] N_ERR_BNDS
                    205: *> \verbatim
                    206: *>          N_ERR_BNDS is INTEGER
                    207: *>     Number of error bounds to return for each right hand side
                    208: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
                    209: *>     ERR_BNDS_COMP below.
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[out] ERR_BNDS_NORM
                    213: *> \verbatim
                    214: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    215: *>     For each right-hand side, this array contains information about
                    216: *>     various error bounds and condition numbers corresponding to the
                    217: *>     normwise relative error, which is defined as follows:
                    218: *>
                    219: *>     Normwise relative error in the ith solution vector:
                    220: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    221: *>            ------------------------------
                    222: *>                  max_j abs(X(j,i))
                    223: *>
                    224: *>     The array is indexed by the type of error information as described
                    225: *>     below. There currently are up to three pieces of information
                    226: *>     returned.
                    227: *>
                    228: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    229: *>     right-hand side.
                    230: *>
                    231: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    232: *>     three fields:
                    233: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    234: *>              reciprocal condition number is less than the threshold
                    235: *>              sqrt(n) * dlamch('Epsilon').
                    236: *>
                    237: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    238: *>              almost certainly within a factor of 10 of the true error
                    239: *>              so long as the next entry is greater than the threshold
                    240: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    241: *>              be trusted if the previous boolean is true.
                    242: *>
                    243: *>     err = 3  Reciprocal condition number: Estimated normwise
                    244: *>              reciprocal condition number.  Compared with the threshold
                    245: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    246: *>              estimate is "guaranteed". These reciprocal condition
                    247: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    248: *>              appropriately scaled matrix Z.
                    249: *>              Let Z = S*A, where S scales each row by a power of the
                    250: *>              radix so all absolute row sums of Z are approximately 1.
                    251: *>
                    252: *>     See Lapack Working Note 165 for further details and extra
                    253: *>     cautions.
                    254: *> \endverbatim
                    255: *>
                    256: *> \param[out] ERR_BNDS_COMP
                    257: *> \verbatim
                    258: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
                    259: *>     For each right-hand side, this array contains information about
                    260: *>     various error bounds and condition numbers corresponding to the
                    261: *>     componentwise relative error, which is defined as follows:
                    262: *>
                    263: *>     Componentwise relative error in the ith solution vector:
                    264: *>                    abs(XTRUE(j,i) - X(j,i))
                    265: *>             max_j ----------------------
                    266: *>                         abs(X(j,i))
                    267: *>
                    268: *>     The array is indexed by the right-hand side i (on which the
                    269: *>     componentwise relative error depends), and the type of error
                    270: *>     information as described below. There currently are up to three
                    271: *>     pieces of information returned for each right-hand side. If
                    272: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
1.15      bertrand  273: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
1.5       bertrand  274: *>     the first (:,N_ERR_BNDS) entries are returned.
                    275: *>
                    276: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    277: *>     right-hand side.
                    278: *>
                    279: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    280: *>     three fields:
                    281: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    282: *>              reciprocal condition number is less than the threshold
                    283: *>              sqrt(n) * dlamch('Epsilon').
                    284: *>
                    285: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    286: *>              almost certainly within a factor of 10 of the true error
                    287: *>              so long as the next entry is greater than the threshold
                    288: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
                    289: *>              be trusted if the previous boolean is true.
                    290: *>
                    291: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    292: *>              reciprocal condition number.  Compared with the threshold
                    293: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
                    294: *>              estimate is "guaranteed". These reciprocal condition
                    295: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    296: *>              appropriately scaled matrix Z.
                    297: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    298: *>              current right-hand side and S scales each row of
                    299: *>              A*diag(x) by a power of the radix so all absolute row
                    300: *>              sums of Z are approximately 1.
                    301: *>
                    302: *>     See Lapack Working Note 165 for further details and extra
                    303: *>     cautions.
                    304: *> \endverbatim
                    305: *>
                    306: *> \param[in] NPARAMS
                    307: *> \verbatim
                    308: *>          NPARAMS is INTEGER
1.15      bertrand  309: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
1.5       bertrand  310: *>     PARAMS array is never referenced and default values are used.
                    311: *> \endverbatim
                    312: *>
                    313: *> \param[in,out] PARAMS
                    314: *> \verbatim
1.7       bertrand  315: *>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
1.15      bertrand  316: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
1.5       bertrand  317: *>     that entry will be filled with default value used for that
                    318: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
                    319: *>     are used for higher-numbered parameters.
                    320: *>
                    321: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
                    322: *>            refinement or not.
                    323: *>         Default: 1.0D+0
1.15      bertrand  324: *>            = 0.0:  No refinement is performed, and no error bounds are
1.5       bertrand  325: *>                    computed.
1.15      bertrand  326: *>            = 1.0:  Use the double-precision refinement algorithm,
1.5       bertrand  327: *>                    possibly with doubled-single computations if the
                    328: *>                    compilation environment does not support DOUBLE
                    329: *>                    PRECISION.
                    330: *>              (other values are reserved for future use)
                    331: *>
                    332: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
                    333: *>            computations allowed for refinement.
                    334: *>         Default: 10
                    335: *>         Aggressive: Set to 100 to permit convergence using approximate
                    336: *>                     factorizations or factorizations other than LU. If
                    337: *>                     the factorization uses a technique other than
                    338: *>                     Gaussian elimination, the guarantees in
                    339: *>                     err_bnds_norm and err_bnds_comp may no longer be
                    340: *>                     trustworthy.
                    341: *>
                    342: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
                    343: *>            will attempt to find a solution with small componentwise
                    344: *>            relative error in the double-precision algorithm.  Positive
                    345: *>            is true, 0.0 is false.
                    346: *>         Default: 1.0 (attempt componentwise convergence)
                    347: *> \endverbatim
                    348: *>
                    349: *> \param[out] WORK
                    350: *> \verbatim
                    351: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    352: *> \endverbatim
                    353: *>
                    354: *> \param[out] RWORK
                    355: *> \verbatim
                    356: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    357: *> \endverbatim
                    358: *>
                    359: *> \param[out] INFO
                    360: *> \verbatim
                    361: *>          INFO is INTEGER
                    362: *>       = 0:  Successful exit. The solution to every right-hand side is
                    363: *>         guaranteed.
                    364: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
                    365: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
                    366: *>         has been completed, but the factor U is exactly singular, so
                    367: *>         the solution and error bounds could not be computed. RCOND = 0
                    368: *>         is returned.
                    369: *>       = N+J: The solution corresponding to the Jth right-hand side is
                    370: *>         not guaranteed. The solutions corresponding to other right-
                    371: *>         hand sides K with K > J may not be guaranteed as well, but
                    372: *>         only the first such right-hand side is reported. If a small
                    373: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
                    374: *>         the Jth right-hand side is the first with a normwise error
                    375: *>         bound that is not guaranteed (the smallest J such
                    376: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
                    377: *>         the Jth right-hand side is the first with either a normwise or
                    378: *>         componentwise error bound that is not guaranteed (the smallest
                    379: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
                    380: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
                    381: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
                    382: *>         about all of the right-hand sides check ERR_BNDS_NORM or
                    383: *>         ERR_BNDS_COMP.
                    384: *> \endverbatim
                    385: *
                    386: *  Authors:
                    387: *  ========
                    388: *
1.12      bertrand  389: *> \author Univ. of Tennessee
                    390: *> \author Univ. of California Berkeley
                    391: *> \author Univ. of Colorado Denver
                    392: *> \author NAG Ltd.
1.5       bertrand  393: *
                    394: *> \ingroup complex16HEcomputational
                    395: *
                    396: *  =====================================================================
1.1       bertrand  397:       SUBROUTINE ZHERFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
                    398:      $                    S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
                    399:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                    400:      $                    WORK, RWORK, INFO )
                    401: *
1.16    ! bertrand  402: *  -- LAPACK computational routine --
1.5       bertrand  403: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    404: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  405: *
                    406: *     .. Scalar Arguments ..
                    407:       CHARACTER          UPLO, EQUED
                    408:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
                    409:      $                   N_ERR_BNDS
                    410:       DOUBLE PRECISION   RCOND
                    411: *     ..
                    412: *     .. Array Arguments ..
                    413:       INTEGER            IPIV( * )
                    414:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    415:      $                   X( LDX, * ), WORK( * )
                    416:       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
                    417:      $                   ERR_BNDS_NORM( NRHS, * ),
                    418:      $                   ERR_BNDS_COMP( NRHS, * )
                    419: *
1.5       bertrand  420: *  ==================================================================
1.1       bertrand  421: *
                    422: *     .. Parameters ..
                    423:       DOUBLE PRECISION   ZERO, ONE
                    424:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    425:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
                    426:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
                    427:       DOUBLE PRECISION   DZTHRESH_DEFAULT
                    428:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
                    429:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
                    430:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
                    431:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
                    432:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
                    433:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    434:      $                   LA_LINRX_CWISE_I
                    435:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    436:      $                   LA_LINRX_ITHRESH_I = 2 )
                    437:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    438:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    439:      $                   LA_LINRX_RCOND_I
                    440:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    441:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    442: *     ..
                    443: *     .. Local Scalars ..
                    444:       CHARACTER(1)       NORM
                    445:       LOGICAL            RCEQU
                    446:       INTEGER            J, PREC_TYPE, REF_TYPE
                    447:       INTEGER            N_NORMS
                    448:       DOUBLE PRECISION   ANORM, RCOND_TMP
                    449:       DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
                    450:       LOGICAL            IGNORE_CWISE
                    451:       INTEGER            ITHRESH
                    452:       DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
                    453: *     ..
                    454: *     .. External Subroutines ..
                    455:       EXTERNAL           XERBLA, ZHECON, ZLA_HERFSX_EXTENDED
                    456: *     ..
                    457: *     .. Intrinsic Functions ..
                    458:       INTRINSIC          MAX, SQRT, TRANSFER
                    459: *     ..
                    460: *     .. External Functions ..
1.12      bertrand  461:       EXTERNAL           LSAME, ILAPREC
1.1       bertrand  462:       EXTERNAL           DLAMCH, ZLANHE, ZLA_HERCOND_X, ZLA_HERCOND_C
                    463:       DOUBLE PRECISION   DLAMCH, ZLANHE, ZLA_HERCOND_X, ZLA_HERCOND_C
                    464:       LOGICAL            LSAME
1.12      bertrand  465:       INTEGER            ILAPREC
1.1       bertrand  466: *     ..
                    467: *     .. Executable Statements ..
                    468: *
                    469: *     Check the input parameters.
                    470: *
                    471:       INFO = 0
                    472:       REF_TYPE = INT( ITREF_DEFAULT )
                    473:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
                    474:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
                    475:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
                    476:          ELSE
                    477:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
                    478:          END IF
                    479:       END IF
                    480: *
                    481: *     Set default parameters.
                    482: *
                    483:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
                    484:       ITHRESH = INT( ITHRESH_DEFAULT )
                    485:       RTHRESH = RTHRESH_DEFAULT
                    486:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
                    487:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
                    488: *
                    489:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
                    490:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
                    491:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
                    492:          ELSE
                    493:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
                    494:          END IF
                    495:       END IF
                    496:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
                    497:          IF ( PARAMS(LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
                    498:             IF ( IGNORE_CWISE ) THEN
                    499:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
                    500:             ELSE
                    501:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
                    502:             END IF
                    503:          ELSE
                    504:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
                    505:          END IF
                    506:       END IF
                    507:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
                    508:          N_NORMS = 0
                    509:       ELSE IF ( IGNORE_CWISE ) THEN
                    510:          N_NORMS = 1
                    511:       ELSE
                    512:          N_NORMS = 2
                    513:       END IF
                    514: *
                    515:       RCEQU = LSAME( EQUED, 'Y' )
                    516: *
                    517: *     Test input parameters.
                    518: *
                    519:       IF (.NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    520:         INFO = -1
                    521:       ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
                    522:         INFO = -2
                    523:       ELSE IF( N.LT.0 ) THEN
                    524:         INFO = -3
                    525:       ELSE IF( NRHS.LT.0 ) THEN
                    526:         INFO = -4
                    527:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    528:         INFO = -6
                    529:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    530:         INFO = -8
                    531:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
1.7       bertrand  532:         INFO = -12
1.1       bertrand  533:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
1.7       bertrand  534:         INFO = -14
1.1       bertrand  535:       END IF
                    536:       IF( INFO.NE.0 ) THEN
                    537:         CALL XERBLA( 'ZHERFSX', -INFO )
                    538:         RETURN
                    539:       END IF
                    540: *
                    541: *     Quick return if possible.
                    542: *
                    543:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    544:          RCOND = 1.0D+0
                    545:          DO J = 1, NRHS
                    546:             BERR( J ) = 0.0D+0
                    547:             IF ( N_ERR_BNDS .GE. 1 ) THEN
                    548:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    549:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    550:             END IF
                    551:             IF ( N_ERR_BNDS .GE. 2 ) THEN
                    552:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
                    553:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
                    554:             END IF
                    555:             IF ( N_ERR_BNDS .GE. 3 ) THEN
                    556:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    557:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    558:             END IF
                    559:          END DO
                    560:          RETURN
                    561:       END IF
                    562: *
                    563: *     Default to failure.
                    564: *
                    565:       RCOND = 0.0D+0
                    566:       DO J = 1, NRHS
                    567:          BERR( J ) = 1.0D+0
                    568:          IF ( N_ERR_BNDS .GE. 1 ) THEN
                    569:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    570:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    571:          END IF
                    572:          IF ( N_ERR_BNDS .GE. 2 ) THEN
                    573:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    574:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    575:          END IF
                    576:          IF ( N_ERR_BNDS .GE. 3 ) THEN
                    577:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    578:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    579:          END IF
                    580:       END DO
                    581: *
                    582: *     Compute the norm of A and the reciprocal of the condition
                    583: *     number of A.
                    584: *
                    585:       NORM = 'I'
                    586:       ANORM = ZLANHE( NORM, UPLO, N, A, LDA, RWORK )
                    587:       CALL ZHECON( UPLO, N, AF, LDAF, IPIV, ANORM, RCOND, WORK,
                    588:      $     INFO )
                    589: *
                    590: *     Perform refinement on each right-hand side
                    591: *
                    592:       IF ( REF_TYPE .NE. 0 ) THEN
                    593: 
                    594:          PREC_TYPE = ILAPREC( 'E' )
                    595: 
                    596:          CALL ZLA_HERFSX_EXTENDED( PREC_TYPE, UPLO,  N,
                    597:      $        NRHS, A, LDA, AF, LDAF, IPIV, RCEQU, S, B,
                    598:      $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
                    599:      $        WORK, RWORK, WORK(N+1),
                    600:      $        TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N), RCOND,
                    601:      $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
                    602:      $        INFO )
                    603:       END IF
                    604: 
                    605:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
                    606:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
                    607: *
                    608: *     Compute scaled normwise condition number cond(A*C).
                    609: *
                    610:          IF ( RCEQU ) THEN
                    611:             RCOND_TMP = ZLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV,
                    612:      $           S, .TRUE., INFO, WORK, RWORK )
                    613:          ELSE
                    614:             RCOND_TMP = ZLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV,
                    615:      $           S, .FALSE., INFO, WORK, RWORK )
                    616:          END IF
                    617:          DO J = 1, NRHS
                    618: *
                    619: *     Cap the error at 1.0.
                    620: *
                    621:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    622:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    623:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    624: *
                    625: *     Threshold the error (see LAWN).
                    626: *
                    627:             IF (RCOND_TMP .LT. ILLRCOND_THRESH) THEN
                    628:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    629:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    630:                IF ( INFO .LE. N ) INFO = N + J
                    631:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
                    632:      $              THEN
                    633:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
                    634:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    635:             END IF
                    636: *
                    637: *     Save the condition number.
                    638: *
                    639:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    640:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    641:             END IF
                    642:          END DO
                    643:       END IF
                    644: 
                    645:       IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
                    646: *
                    647: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
                    648: *     each right-hand side using the current solution as an estimate of
                    649: *     the true solution.  If the componentwise error estimate is too
                    650: *     large, then the solution is a lousy estimate of truth and the
                    651: *     estimated RCOND may be too optimistic.  To avoid misleading users,
                    652: *     the inverse condition number is set to 0.0 when the estimated
                    653: *     cwise error is at least CWISE_WRONG.
                    654: *
                    655:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
                    656:          DO J = 1, NRHS
                    657:             IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
                    658:      $     THEN
                    659:                RCOND_TMP = ZLA_HERCOND_X( UPLO, N, A, LDA, AF, LDAF,
                    660:      $         IPIV, X( 1, J ), INFO, WORK, RWORK )
                    661:             ELSE
                    662:                RCOND_TMP = 0.0D+0
                    663:             END IF
                    664: *
                    665: *     Cap the error at 1.0.
                    666: *
                    667:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    668:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    669:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    670: *
                    671: *     Threshold the error (see LAWN).
                    672: *
                    673:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    674:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    675:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
1.7       bertrand  676:                IF ( .NOT. IGNORE_CWISE
1.1       bertrand  677:      $              .AND. INFO.LT.N + J ) INFO = N + J
                    678:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
                    679:      $              .LT. ERR_LBND ) THEN
                    680:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
                    681:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    682:             END IF
                    683: *
                    684: *     Save the condition number.
                    685: *
                    686:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    687:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    688:             END IF
                    689: 
                    690:          END DO
                    691:       END IF
                    692: *
                    693:       RETURN
                    694: *
                    695: *     End of ZHERFSX
                    696: *
                    697:       END

CVSweb interface <joel.bertrand@systella.fr>