File:  [local] / rpl / lapack / lapack / zherfs.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:54 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZHERFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
    2:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          UPLO
   13:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * )
   17:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   18:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   19:      $                   WORK( * ), X( LDX, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZHERFS improves the computed solution to a system of linear
   26: *  equations when the coefficient matrix is Hermitian indefinite, and
   27: *  provides error bounds and backward error estimates for the solution.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  UPLO    (input) CHARACTER*1
   33: *          = 'U':  Upper triangle of A is stored;
   34: *          = 'L':  Lower triangle of A is stored.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrix A.  N >= 0.
   38: *
   39: *  NRHS    (input) INTEGER
   40: *          The number of right hand sides, i.e., the number of columns
   41: *          of the matrices B and X.  NRHS >= 0.
   42: *
   43: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
   44: *          The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
   45: *          upper triangular part of A contains the upper triangular part
   46: *          of the matrix A, and the strictly lower triangular part of A
   47: *          is not referenced.  If UPLO = 'L', the leading N-by-N lower
   48: *          triangular part of A contains the lower triangular part of
   49: *          the matrix A, and the strictly upper triangular part of A is
   50: *          not referenced.
   51: *
   52: *  LDA     (input) INTEGER
   53: *          The leading dimension of the array A.  LDA >= max(1,N).
   54: *
   55: *  AF      (input) COMPLEX*16 array, dimension (LDAF,N)
   56: *          The factored form of the matrix A.  AF contains the block
   57: *          diagonal matrix D and the multipliers used to obtain the
   58: *          factor U or L from the factorization A = U*D*U**H or
   59: *          A = L*D*L**H as computed by ZHETRF.
   60: *
   61: *  LDAF    (input) INTEGER
   62: *          The leading dimension of the array AF.  LDAF >= max(1,N).
   63: *
   64: *  IPIV    (input) INTEGER array, dimension (N)
   65: *          Details of the interchanges and the block structure of D
   66: *          as determined by ZHETRF.
   67: *
   68: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
   69: *          The right hand side matrix B.
   70: *
   71: *  LDB     (input) INTEGER
   72: *          The leading dimension of the array B.  LDB >= max(1,N).
   73: *
   74: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
   75: *          On entry, the solution matrix X, as computed by ZHETRS.
   76: *          On exit, the improved solution matrix X.
   77: *
   78: *  LDX     (input) INTEGER
   79: *          The leading dimension of the array X.  LDX >= max(1,N).
   80: *
   81: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   82: *          The estimated forward error bound for each solution vector
   83: *          X(j) (the j-th column of the solution matrix X).
   84: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   85: *          is an estimated upper bound for the magnitude of the largest
   86: *          element in (X(j) - XTRUE) divided by the magnitude of the
   87: *          largest element in X(j).  The estimate is as reliable as
   88: *          the estimate for RCOND, and is almost always a slight
   89: *          overestimate of the true error.
   90: *
   91: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   92: *          The componentwise relative backward error of each solution
   93: *          vector X(j) (i.e., the smallest relative change in
   94: *          any element of A or B that makes X(j) an exact solution).
   95: *
   96: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
   97: *
   98: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
   99: *
  100: *  INFO    (output) INTEGER
  101: *          = 0:  successful exit
  102: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  103: *
  104: *  Internal Parameters
  105: *  ===================
  106: *
  107: *  ITMAX is the maximum number of steps of iterative refinement.
  108: *
  109: *  =====================================================================
  110: *
  111: *     .. Parameters ..
  112:       INTEGER            ITMAX
  113:       PARAMETER          ( ITMAX = 5 )
  114:       DOUBLE PRECISION   ZERO
  115:       PARAMETER          ( ZERO = 0.0D+0 )
  116:       COMPLEX*16         ONE
  117:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  118:       DOUBLE PRECISION   TWO
  119:       PARAMETER          ( TWO = 2.0D+0 )
  120:       DOUBLE PRECISION   THREE
  121:       PARAMETER          ( THREE = 3.0D+0 )
  122: *     ..
  123: *     .. Local Scalars ..
  124:       LOGICAL            UPPER
  125:       INTEGER            COUNT, I, J, K, KASE, NZ
  126:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  127:       COMPLEX*16         ZDUM
  128: *     ..
  129: *     .. Local Arrays ..
  130:       INTEGER            ISAVE( 3 )
  131: *     ..
  132: *     .. External Subroutines ..
  133:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHEMV, ZHETRS, ZLACN2
  134: *     ..
  135: *     .. Intrinsic Functions ..
  136:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  137: *     ..
  138: *     .. External Functions ..
  139:       LOGICAL            LSAME
  140:       DOUBLE PRECISION   DLAMCH
  141:       EXTERNAL           LSAME, DLAMCH
  142: *     ..
  143: *     .. Statement Functions ..
  144:       DOUBLE PRECISION   CABS1
  145: *     ..
  146: *     .. Statement Function definitions ..
  147:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  148: *     ..
  149: *     .. Executable Statements ..
  150: *
  151: *     Test the input parameters.
  152: *
  153:       INFO = 0
  154:       UPPER = LSAME( UPLO, 'U' )
  155:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  156:          INFO = -1
  157:       ELSE IF( N.LT.0 ) THEN
  158:          INFO = -2
  159:       ELSE IF( NRHS.LT.0 ) THEN
  160:          INFO = -3
  161:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  162:          INFO = -5
  163:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  164:          INFO = -7
  165:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  166:          INFO = -10
  167:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  168:          INFO = -12
  169:       END IF
  170:       IF( INFO.NE.0 ) THEN
  171:          CALL XERBLA( 'ZHERFS', -INFO )
  172:          RETURN
  173:       END IF
  174: *
  175: *     Quick return if possible
  176: *
  177:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  178:          DO 10 J = 1, NRHS
  179:             FERR( J ) = ZERO
  180:             BERR( J ) = ZERO
  181:    10    CONTINUE
  182:          RETURN
  183:       END IF
  184: *
  185: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  186: *
  187:       NZ = N + 1
  188:       EPS = DLAMCH( 'Epsilon' )
  189:       SAFMIN = DLAMCH( 'Safe minimum' )
  190:       SAFE1 = NZ*SAFMIN
  191:       SAFE2 = SAFE1 / EPS
  192: *
  193: *     Do for each right hand side
  194: *
  195:       DO 140 J = 1, NRHS
  196: *
  197:          COUNT = 1
  198:          LSTRES = THREE
  199:    20    CONTINUE
  200: *
  201: *        Loop until stopping criterion is satisfied.
  202: *
  203: *        Compute residual R = B - A * X
  204: *
  205:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  206:          CALL ZHEMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK, 1 )
  207: *
  208: *        Compute componentwise relative backward error from formula
  209: *
  210: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  211: *
  212: *        where abs(Z) is the componentwise absolute value of the matrix
  213: *        or vector Z.  If the i-th component of the denominator is less
  214: *        than SAFE2, then SAFE1 is added to the i-th components of the
  215: *        numerator and denominator before dividing.
  216: *
  217:          DO 30 I = 1, N
  218:             RWORK( I ) = CABS1( B( I, J ) )
  219:    30    CONTINUE
  220: *
  221: *        Compute abs(A)*abs(X) + abs(B).
  222: *
  223:          IF( UPPER ) THEN
  224:             DO 50 K = 1, N
  225:                S = ZERO
  226:                XK = CABS1( X( K, J ) )
  227:                DO 40 I = 1, K - 1
  228:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  229:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  230:    40          CONTINUE
  231:                RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK + S
  232:    50       CONTINUE
  233:          ELSE
  234:             DO 70 K = 1, N
  235:                S = ZERO
  236:                XK = CABS1( X( K, J ) )
  237:                RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK
  238:                DO 60 I = K + 1, N
  239:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  240:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  241:    60          CONTINUE
  242:                RWORK( K ) = RWORK( K ) + S
  243:    70       CONTINUE
  244:          END IF
  245:          S = ZERO
  246:          DO 80 I = 1, N
  247:             IF( RWORK( I ).GT.SAFE2 ) THEN
  248:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  249:             ELSE
  250:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  251:      $             ( RWORK( I )+SAFE1 ) )
  252:             END IF
  253:    80    CONTINUE
  254:          BERR( J ) = S
  255: *
  256: *        Test stopping criterion. Continue iterating if
  257: *           1) The residual BERR(J) is larger than machine epsilon, and
  258: *           2) BERR(J) decreased by at least a factor of 2 during the
  259: *              last iteration, and
  260: *           3) At most ITMAX iterations tried.
  261: *
  262:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  263:      $       COUNT.LE.ITMAX ) THEN
  264: *
  265: *           Update solution and try again.
  266: *
  267:             CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  268:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  269:             LSTRES = BERR( J )
  270:             COUNT = COUNT + 1
  271:             GO TO 20
  272:          END IF
  273: *
  274: *        Bound error from formula
  275: *
  276: *        norm(X - XTRUE) / norm(X) .le. FERR =
  277: *        norm( abs(inv(A))*
  278: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  279: *
  280: *        where
  281: *          norm(Z) is the magnitude of the largest component of Z
  282: *          inv(A) is the inverse of A
  283: *          abs(Z) is the componentwise absolute value of the matrix or
  284: *             vector Z
  285: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  286: *          EPS is machine epsilon
  287: *
  288: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  289: *        is incremented by SAFE1 if the i-th component of
  290: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  291: *
  292: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  293: *           inv(A) * diag(W),
  294: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  295: *
  296:          DO 90 I = 1, N
  297:             IF( RWORK( I ).GT.SAFE2 ) THEN
  298:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  299:             ELSE
  300:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  301:      $                      SAFE1
  302:             END IF
  303:    90    CONTINUE
  304: *
  305:          KASE = 0
  306:   100    CONTINUE
  307:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  308:          IF( KASE.NE.0 ) THEN
  309:             IF( KASE.EQ.1 ) THEN
  310: *
  311: *              Multiply by diag(W)*inv(A').
  312: *
  313:                CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  314:                DO 110 I = 1, N
  315:                   WORK( I ) = RWORK( I )*WORK( I )
  316:   110          CONTINUE
  317:             ELSE IF( KASE.EQ.2 ) THEN
  318: *
  319: *              Multiply by inv(A)*diag(W).
  320: *
  321:                DO 120 I = 1, N
  322:                   WORK( I ) = RWORK( I )*WORK( I )
  323:   120          CONTINUE
  324:                CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  325:             END IF
  326:             GO TO 100
  327:          END IF
  328: *
  329: *        Normalize error.
  330: *
  331:          LSTRES = ZERO
  332:          DO 130 I = 1, N
  333:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  334:   130    CONTINUE
  335:          IF( LSTRES.NE.ZERO )
  336:      $      FERR( J ) = FERR( J ) / LSTRES
  337: *
  338:   140 CONTINUE
  339: *
  340:       RETURN
  341: *
  342: *     End of ZHERFS
  343: *
  344:       END

CVSweb interface <joel.bertrand@systella.fr>