Annotation of rpl/lapack/lapack/zherfs.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE ZHERFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                      2:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
                     10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          UPLO
                     13:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IPIV( * )
                     17:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     18:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     19:      $                   WORK( * ), X( LDX, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  ZHERFS improves the computed solution to a system of linear
                     26: *  equations when the coefficient matrix is Hermitian indefinite, and
                     27: *  provides error bounds and backward error estimates for the solution.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  UPLO    (input) CHARACTER*1
                     33: *          = 'U':  Upper triangle of A is stored;
                     34: *          = 'L':  Lower triangle of A is stored.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The order of the matrix A.  N >= 0.
                     38: *
                     39: *  NRHS    (input) INTEGER
                     40: *          The number of right hand sides, i.e., the number of columns
                     41: *          of the matrices B and X.  NRHS >= 0.
                     42: *
                     43: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
                     44: *          The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
                     45: *          upper triangular part of A contains the upper triangular part
                     46: *          of the matrix A, and the strictly lower triangular part of A
                     47: *          is not referenced.  If UPLO = 'L', the leading N-by-N lower
                     48: *          triangular part of A contains the lower triangular part of
                     49: *          the matrix A, and the strictly upper triangular part of A is
                     50: *          not referenced.
                     51: *
                     52: *  LDA     (input) INTEGER
                     53: *          The leading dimension of the array A.  LDA >= max(1,N).
                     54: *
                     55: *  AF      (input) COMPLEX*16 array, dimension (LDAF,N)
                     56: *          The factored form of the matrix A.  AF contains the block
                     57: *          diagonal matrix D and the multipliers used to obtain the
                     58: *          factor U or L from the factorization A = U*D*U**H or
                     59: *          A = L*D*L**H as computed by ZHETRF.
                     60: *
                     61: *  LDAF    (input) INTEGER
                     62: *          The leading dimension of the array AF.  LDAF >= max(1,N).
                     63: *
                     64: *  IPIV    (input) INTEGER array, dimension (N)
                     65: *          Details of the interchanges and the block structure of D
                     66: *          as determined by ZHETRF.
                     67: *
                     68: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                     69: *          The right hand side matrix B.
                     70: *
                     71: *  LDB     (input) INTEGER
                     72: *          The leading dimension of the array B.  LDB >= max(1,N).
                     73: *
                     74: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
                     75: *          On entry, the solution matrix X, as computed by ZHETRS.
                     76: *          On exit, the improved solution matrix X.
                     77: *
                     78: *  LDX     (input) INTEGER
                     79: *          The leading dimension of the array X.  LDX >= max(1,N).
                     80: *
                     81: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     82: *          The estimated forward error bound for each solution vector
                     83: *          X(j) (the j-th column of the solution matrix X).
                     84: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                     85: *          is an estimated upper bound for the magnitude of the largest
                     86: *          element in (X(j) - XTRUE) divided by the magnitude of the
                     87: *          largest element in X(j).  The estimate is as reliable as
                     88: *          the estimate for RCOND, and is almost always a slight
                     89: *          overestimate of the true error.
                     90: *
                     91: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     92: *          The componentwise relative backward error of each solution
                     93: *          vector X(j) (i.e., the smallest relative change in
                     94: *          any element of A or B that makes X(j) an exact solution).
                     95: *
                     96: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                     97: *
                     98: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                     99: *
                    100: *  INFO    (output) INTEGER
                    101: *          = 0:  successful exit
                    102: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    103: *
                    104: *  Internal Parameters
                    105: *  ===================
                    106: *
                    107: *  ITMAX is the maximum number of steps of iterative refinement.
                    108: *
                    109: *  =====================================================================
                    110: *
                    111: *     .. Parameters ..
                    112:       INTEGER            ITMAX
                    113:       PARAMETER          ( ITMAX = 5 )
                    114:       DOUBLE PRECISION   ZERO
                    115:       PARAMETER          ( ZERO = 0.0D+0 )
                    116:       COMPLEX*16         ONE
                    117:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    118:       DOUBLE PRECISION   TWO
                    119:       PARAMETER          ( TWO = 2.0D+0 )
                    120:       DOUBLE PRECISION   THREE
                    121:       PARAMETER          ( THREE = 3.0D+0 )
                    122: *     ..
                    123: *     .. Local Scalars ..
                    124:       LOGICAL            UPPER
                    125:       INTEGER            COUNT, I, J, K, KASE, NZ
                    126:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    127:       COMPLEX*16         ZDUM
                    128: *     ..
                    129: *     .. Local Arrays ..
                    130:       INTEGER            ISAVE( 3 )
                    131: *     ..
                    132: *     .. External Subroutines ..
                    133:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHEMV, ZHETRS, ZLACN2
                    134: *     ..
                    135: *     .. Intrinsic Functions ..
                    136:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    137: *     ..
                    138: *     .. External Functions ..
                    139:       LOGICAL            LSAME
                    140:       DOUBLE PRECISION   DLAMCH
                    141:       EXTERNAL           LSAME, DLAMCH
                    142: *     ..
                    143: *     .. Statement Functions ..
                    144:       DOUBLE PRECISION   CABS1
                    145: *     ..
                    146: *     .. Statement Function definitions ..
                    147:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    148: *     ..
                    149: *     .. Executable Statements ..
                    150: *
                    151: *     Test the input parameters.
                    152: *
                    153:       INFO = 0
                    154:       UPPER = LSAME( UPLO, 'U' )
                    155:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    156:          INFO = -1
                    157:       ELSE IF( N.LT.0 ) THEN
                    158:          INFO = -2
                    159:       ELSE IF( NRHS.LT.0 ) THEN
                    160:          INFO = -3
                    161:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    162:          INFO = -5
                    163:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    164:          INFO = -7
                    165:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    166:          INFO = -10
                    167:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    168:          INFO = -12
                    169:       END IF
                    170:       IF( INFO.NE.0 ) THEN
                    171:          CALL XERBLA( 'ZHERFS', -INFO )
                    172:          RETURN
                    173:       END IF
                    174: *
                    175: *     Quick return if possible
                    176: *
                    177:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    178:          DO 10 J = 1, NRHS
                    179:             FERR( J ) = ZERO
                    180:             BERR( J ) = ZERO
                    181:    10    CONTINUE
                    182:          RETURN
                    183:       END IF
                    184: *
                    185: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    186: *
                    187:       NZ = N + 1
                    188:       EPS = DLAMCH( 'Epsilon' )
                    189:       SAFMIN = DLAMCH( 'Safe minimum' )
                    190:       SAFE1 = NZ*SAFMIN
                    191:       SAFE2 = SAFE1 / EPS
                    192: *
                    193: *     Do for each right hand side
                    194: *
                    195:       DO 140 J = 1, NRHS
                    196: *
                    197:          COUNT = 1
                    198:          LSTRES = THREE
                    199:    20    CONTINUE
                    200: *
                    201: *        Loop until stopping criterion is satisfied.
                    202: *
                    203: *        Compute residual R = B - A * X
                    204: *
                    205:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    206:          CALL ZHEMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK, 1 )
                    207: *
                    208: *        Compute componentwise relative backward error from formula
                    209: *
                    210: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    211: *
                    212: *        where abs(Z) is the componentwise absolute value of the matrix
                    213: *        or vector Z.  If the i-th component of the denominator is less
                    214: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    215: *        numerator and denominator before dividing.
                    216: *
                    217:          DO 30 I = 1, N
                    218:             RWORK( I ) = CABS1( B( I, J ) )
                    219:    30    CONTINUE
                    220: *
                    221: *        Compute abs(A)*abs(X) + abs(B).
                    222: *
                    223:          IF( UPPER ) THEN
                    224:             DO 50 K = 1, N
                    225:                S = ZERO
                    226:                XK = CABS1( X( K, J ) )
                    227:                DO 40 I = 1, K - 1
                    228:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
                    229:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
                    230:    40          CONTINUE
                    231:                RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK + S
                    232:    50       CONTINUE
                    233:          ELSE
                    234:             DO 70 K = 1, N
                    235:                S = ZERO
                    236:                XK = CABS1( X( K, J ) )
                    237:                RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK
                    238:                DO 60 I = K + 1, N
                    239:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
                    240:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
                    241:    60          CONTINUE
                    242:                RWORK( K ) = RWORK( K ) + S
                    243:    70       CONTINUE
                    244:          END IF
                    245:          S = ZERO
                    246:          DO 80 I = 1, N
                    247:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    248:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    249:             ELSE
                    250:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    251:      $             ( RWORK( I )+SAFE1 ) )
                    252:             END IF
                    253:    80    CONTINUE
                    254:          BERR( J ) = S
                    255: *
                    256: *        Test stopping criterion. Continue iterating if
                    257: *           1) The residual BERR(J) is larger than machine epsilon, and
                    258: *           2) BERR(J) decreased by at least a factor of 2 during the
                    259: *              last iteration, and
                    260: *           3) At most ITMAX iterations tried.
                    261: *
                    262:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    263:      $       COUNT.LE.ITMAX ) THEN
                    264: *
                    265: *           Update solution and try again.
                    266: *
                    267:             CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
                    268:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
                    269:             LSTRES = BERR( J )
                    270:             COUNT = COUNT + 1
                    271:             GO TO 20
                    272:          END IF
                    273: *
                    274: *        Bound error from formula
                    275: *
                    276: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    277: *        norm( abs(inv(A))*
                    278: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    279: *
                    280: *        where
                    281: *          norm(Z) is the magnitude of the largest component of Z
                    282: *          inv(A) is the inverse of A
                    283: *          abs(Z) is the componentwise absolute value of the matrix or
                    284: *             vector Z
                    285: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    286: *          EPS is machine epsilon
                    287: *
                    288: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    289: *        is incremented by SAFE1 if the i-th component of
                    290: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    291: *
                    292: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    293: *           inv(A) * diag(W),
                    294: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    295: *
                    296:          DO 90 I = 1, N
                    297:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    298:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    299:             ELSE
                    300:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    301:      $                      SAFE1
                    302:             END IF
                    303:    90    CONTINUE
                    304: *
                    305:          KASE = 0
                    306:   100    CONTINUE
                    307:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    308:          IF( KASE.NE.0 ) THEN
                    309:             IF( KASE.EQ.1 ) THEN
                    310: *
                    311: *              Multiply by diag(W)*inv(A').
                    312: *
                    313:                CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
                    314:                DO 110 I = 1, N
                    315:                   WORK( I ) = RWORK( I )*WORK( I )
                    316:   110          CONTINUE
                    317:             ELSE IF( KASE.EQ.2 ) THEN
                    318: *
                    319: *              Multiply by inv(A)*diag(W).
                    320: *
                    321:                DO 120 I = 1, N
                    322:                   WORK( I ) = RWORK( I )*WORK( I )
                    323:   120          CONTINUE
                    324:                CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
                    325:             END IF
                    326:             GO TO 100
                    327:          END IF
                    328: *
                    329: *        Normalize error.
                    330: *
                    331:          LSTRES = ZERO
                    332:          DO 130 I = 1, N
                    333:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    334:   130    CONTINUE
                    335:          IF( LSTRES.NE.ZERO )
                    336:      $      FERR( J ) = FERR( J ) / LSTRES
                    337: *
                    338:   140 CONTINUE
                    339: *
                    340:       RETURN
                    341: *
                    342: *     End of ZHERFS
                    343: *
                    344:       END

CVSweb interface <joel.bertrand@systella.fr>