Annotation of rpl/lapack/lapack/zherfs.f, revision 1.18

1.9       bertrand    1: *> \brief \b ZHERFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZHERFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zherfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zherfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zherfs.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHERFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                     22: *                          X, LDX, FERR, BERR, WORK, RWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * )
                     30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     31: *       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     32: *      $                   WORK( * ), X( LDX, * )
                     33: *       ..
1.15      bertrand   34: *
1.9       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZHERFS improves the computed solution to a system of linear
                     42: *> equations when the coefficient matrix is Hermitian indefinite, and
                     43: *> provides error bounds and backward error estimates for the solution.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] UPLO
                     50: *> \verbatim
                     51: *>          UPLO is CHARACTER*1
                     52: *>          = 'U':  Upper triangle of A is stored;
                     53: *>          = 'L':  Lower triangle of A is stored.
                     54: *> \endverbatim
                     55: *>
                     56: *> \param[in] N
                     57: *> \verbatim
                     58: *>          N is INTEGER
                     59: *>          The order of the matrix A.  N >= 0.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] NRHS
                     63: *> \verbatim
                     64: *>          NRHS is INTEGER
                     65: *>          The number of right hand sides, i.e., the number of columns
                     66: *>          of the matrices B and X.  NRHS >= 0.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] A
                     70: *> \verbatim
                     71: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     72: *>          The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
                     73: *>          upper triangular part of A contains the upper triangular part
                     74: *>          of the matrix A, and the strictly lower triangular part of A
                     75: *>          is not referenced.  If UPLO = 'L', the leading N-by-N lower
                     76: *>          triangular part of A contains the lower triangular part of
                     77: *>          the matrix A, and the strictly upper triangular part of A is
                     78: *>          not referenced.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] LDA
                     82: *> \verbatim
                     83: *>          LDA is INTEGER
                     84: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] AF
                     88: *> \verbatim
                     89: *>          AF is COMPLEX*16 array, dimension (LDAF,N)
                     90: *>          The factored form of the matrix A.  AF contains the block
                     91: *>          diagonal matrix D and the multipliers used to obtain the
                     92: *>          factor U or L from the factorization A = U*D*U**H or
                     93: *>          A = L*D*L**H as computed by ZHETRF.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LDAF
                     97: *> \verbatim
                     98: *>          LDAF is INTEGER
                     99: *>          The leading dimension of the array AF.  LDAF >= max(1,N).
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] IPIV
                    103: *> \verbatim
                    104: *>          IPIV is INTEGER array, dimension (N)
                    105: *>          Details of the interchanges and the block structure of D
                    106: *>          as determined by ZHETRF.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] B
                    110: *> \verbatim
                    111: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    112: *>          The right hand side matrix B.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] LDB
                    116: *> \verbatim
                    117: *>          LDB is INTEGER
                    118: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in,out] X
                    122: *> \verbatim
                    123: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    124: *>          On entry, the solution matrix X, as computed by ZHETRS.
                    125: *>          On exit, the improved solution matrix X.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LDX
                    129: *> \verbatim
                    130: *>          LDX is INTEGER
                    131: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[out] FERR
                    135: *> \verbatim
                    136: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    137: *>          The estimated forward error bound for each solution vector
                    138: *>          X(j) (the j-th column of the solution matrix X).
                    139: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    140: *>          is an estimated upper bound for the magnitude of the largest
                    141: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    142: *>          largest element in X(j).  The estimate is as reliable as
                    143: *>          the estimate for RCOND, and is almost always a slight
                    144: *>          overestimate of the true error.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[out] BERR
                    148: *> \verbatim
                    149: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    150: *>          The componentwise relative backward error of each solution
                    151: *>          vector X(j) (i.e., the smallest relative change in
                    152: *>          any element of A or B that makes X(j) an exact solution).
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] WORK
                    156: *> \verbatim
                    157: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[out] RWORK
                    161: *> \verbatim
                    162: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[out] INFO
                    166: *> \verbatim
                    167: *>          INFO is INTEGER
                    168: *>          = 0:  successful exit
                    169: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    170: *> \endverbatim
                    171: *
                    172: *> \par Internal Parameters:
                    173: *  =========================
                    174: *>
                    175: *> \verbatim
                    176: *>  ITMAX is the maximum number of steps of iterative refinement.
                    177: *> \endverbatim
                    178: *
                    179: *  Authors:
                    180: *  ========
                    181: *
1.15      bertrand  182: *> \author Univ. of Tennessee
                    183: *> \author Univ. of California Berkeley
                    184: *> \author Univ. of Colorado Denver
                    185: *> \author NAG Ltd.
1.9       bertrand  186: *
                    187: *> \ingroup complex16HEcomputational
                    188: *
                    189: *  =====================================================================
1.1       bertrand  190:       SUBROUTINE ZHERFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
                    191:      $                   X, LDX, FERR, BERR, WORK, RWORK, INFO )
                    192: *
1.18    ! bertrand  193: *  -- LAPACK computational routine --
1.1       bertrand  194: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    195: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    196: *
                    197: *     .. Scalar Arguments ..
                    198:       CHARACTER          UPLO
                    199:       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
                    200: *     ..
                    201: *     .. Array Arguments ..
                    202:       INTEGER            IPIV( * )
                    203:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    204:       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    205:      $                   WORK( * ), X( LDX, * )
                    206: *     ..
                    207: *
                    208: *  =====================================================================
                    209: *
                    210: *     .. Parameters ..
                    211:       INTEGER            ITMAX
                    212:       PARAMETER          ( ITMAX = 5 )
                    213:       DOUBLE PRECISION   ZERO
                    214:       PARAMETER          ( ZERO = 0.0D+0 )
                    215:       COMPLEX*16         ONE
                    216:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    217:       DOUBLE PRECISION   TWO
                    218:       PARAMETER          ( TWO = 2.0D+0 )
                    219:       DOUBLE PRECISION   THREE
                    220:       PARAMETER          ( THREE = 3.0D+0 )
                    221: *     ..
                    222: *     .. Local Scalars ..
                    223:       LOGICAL            UPPER
                    224:       INTEGER            COUNT, I, J, K, KASE, NZ
                    225:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    226:       COMPLEX*16         ZDUM
                    227: *     ..
                    228: *     .. Local Arrays ..
                    229:       INTEGER            ISAVE( 3 )
                    230: *     ..
                    231: *     .. External Subroutines ..
                    232:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHEMV, ZHETRS, ZLACN2
                    233: *     ..
                    234: *     .. Intrinsic Functions ..
                    235:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    236: *     ..
                    237: *     .. External Functions ..
                    238:       LOGICAL            LSAME
                    239:       DOUBLE PRECISION   DLAMCH
                    240:       EXTERNAL           LSAME, DLAMCH
                    241: *     ..
                    242: *     .. Statement Functions ..
                    243:       DOUBLE PRECISION   CABS1
                    244: *     ..
                    245: *     .. Statement Function definitions ..
                    246:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    247: *     ..
                    248: *     .. Executable Statements ..
                    249: *
                    250: *     Test the input parameters.
                    251: *
                    252:       INFO = 0
                    253:       UPPER = LSAME( UPLO, 'U' )
                    254:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    255:          INFO = -1
                    256:       ELSE IF( N.LT.0 ) THEN
                    257:          INFO = -2
                    258:       ELSE IF( NRHS.LT.0 ) THEN
                    259:          INFO = -3
                    260:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    261:          INFO = -5
                    262:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
                    263:          INFO = -7
                    264:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    265:          INFO = -10
                    266:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    267:          INFO = -12
                    268:       END IF
                    269:       IF( INFO.NE.0 ) THEN
                    270:          CALL XERBLA( 'ZHERFS', -INFO )
                    271:          RETURN
                    272:       END IF
                    273: *
                    274: *     Quick return if possible
                    275: *
                    276:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    277:          DO 10 J = 1, NRHS
                    278:             FERR( J ) = ZERO
                    279:             BERR( J ) = ZERO
                    280:    10    CONTINUE
                    281:          RETURN
                    282:       END IF
                    283: *
                    284: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    285: *
                    286:       NZ = N + 1
                    287:       EPS = DLAMCH( 'Epsilon' )
                    288:       SAFMIN = DLAMCH( 'Safe minimum' )
                    289:       SAFE1 = NZ*SAFMIN
                    290:       SAFE2 = SAFE1 / EPS
                    291: *
                    292: *     Do for each right hand side
                    293: *
                    294:       DO 140 J = 1, NRHS
                    295: *
                    296:          COUNT = 1
                    297:          LSTRES = THREE
                    298:    20    CONTINUE
                    299: *
                    300: *        Loop until stopping criterion is satisfied.
                    301: *
                    302: *        Compute residual R = B - A * X
                    303: *
                    304:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    305:          CALL ZHEMV( UPLO, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK, 1 )
                    306: *
                    307: *        Compute componentwise relative backward error from formula
                    308: *
                    309: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    310: *
                    311: *        where abs(Z) is the componentwise absolute value of the matrix
                    312: *        or vector Z.  If the i-th component of the denominator is less
                    313: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    314: *        numerator and denominator before dividing.
                    315: *
                    316:          DO 30 I = 1, N
                    317:             RWORK( I ) = CABS1( B( I, J ) )
                    318:    30    CONTINUE
                    319: *
                    320: *        Compute abs(A)*abs(X) + abs(B).
                    321: *
                    322:          IF( UPPER ) THEN
                    323:             DO 50 K = 1, N
                    324:                S = ZERO
                    325:                XK = CABS1( X( K, J ) )
                    326:                DO 40 I = 1, K - 1
                    327:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
                    328:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
                    329:    40          CONTINUE
                    330:                RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK + S
                    331:    50       CONTINUE
                    332:          ELSE
                    333:             DO 70 K = 1, N
                    334:                S = ZERO
                    335:                XK = CABS1( X( K, J ) )
                    336:                RWORK( K ) = RWORK( K ) + ABS( DBLE( A( K, K ) ) )*XK
                    337:                DO 60 I = K + 1, N
                    338:                   RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
                    339:                   S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
                    340:    60          CONTINUE
                    341:                RWORK( K ) = RWORK( K ) + S
                    342:    70       CONTINUE
                    343:          END IF
                    344:          S = ZERO
                    345:          DO 80 I = 1, N
                    346:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    347:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    348:             ELSE
                    349:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    350:      $             ( RWORK( I )+SAFE1 ) )
                    351:             END IF
                    352:    80    CONTINUE
                    353:          BERR( J ) = S
                    354: *
                    355: *        Test stopping criterion. Continue iterating if
                    356: *           1) The residual BERR(J) is larger than machine epsilon, and
                    357: *           2) BERR(J) decreased by at least a factor of 2 during the
                    358: *              last iteration, and
                    359: *           3) At most ITMAX iterations tried.
                    360: *
                    361:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    362:      $       COUNT.LE.ITMAX ) THEN
                    363: *
                    364: *           Update solution and try again.
                    365: *
                    366:             CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
                    367:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
                    368:             LSTRES = BERR( J )
                    369:             COUNT = COUNT + 1
                    370:             GO TO 20
                    371:          END IF
                    372: *
                    373: *        Bound error from formula
                    374: *
                    375: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    376: *        norm( abs(inv(A))*
                    377: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    378: *
                    379: *        where
                    380: *          norm(Z) is the magnitude of the largest component of Z
                    381: *          inv(A) is the inverse of A
                    382: *          abs(Z) is the componentwise absolute value of the matrix or
                    383: *             vector Z
                    384: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    385: *          EPS is machine epsilon
                    386: *
                    387: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    388: *        is incremented by SAFE1 if the i-th component of
                    389: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    390: *
                    391: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    392: *           inv(A) * diag(W),
                    393: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    394: *
                    395:          DO 90 I = 1, N
                    396:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    397:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    398:             ELSE
                    399:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    400:      $                      SAFE1
                    401:             END IF
                    402:    90    CONTINUE
                    403: *
                    404:          KASE = 0
                    405:   100    CONTINUE
                    406:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    407:          IF( KASE.NE.0 ) THEN
                    408:             IF( KASE.EQ.1 ) THEN
                    409: *
1.8       bertrand  410: *              Multiply by diag(W)*inv(A**H).
1.1       bertrand  411: *
                    412:                CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
                    413:                DO 110 I = 1, N
                    414:                   WORK( I ) = RWORK( I )*WORK( I )
                    415:   110          CONTINUE
                    416:             ELSE IF( KASE.EQ.2 ) THEN
                    417: *
                    418: *              Multiply by inv(A)*diag(W).
                    419: *
                    420:                DO 120 I = 1, N
                    421:                   WORK( I ) = RWORK( I )*WORK( I )
                    422:   120          CONTINUE
                    423:                CALL ZHETRS( UPLO, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
                    424:             END IF
                    425:             GO TO 100
                    426:          END IF
                    427: *
                    428: *        Normalize error.
                    429: *
                    430:          LSTRES = ZERO
                    431:          DO 130 I = 1, N
                    432:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    433:   130    CONTINUE
                    434:          IF( LSTRES.NE.ZERO )
                    435:      $      FERR( J ) = FERR( J ) / LSTRES
                    436: *
                    437:   140 CONTINUE
                    438: *
                    439:       RETURN
                    440: *
                    441: *     End of ZHERFS
                    442: *
                    443:       END

CVSweb interface <joel.bertrand@systella.fr>