File:  [local] / rpl / lapack / lapack / zhegvx.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:23 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHEGVX
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHEGVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
   22: *                          VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
   23: *                          LWORK, RWORK, IWORK, IFAIL, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * ), W( * )
   33: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
   34: *      $                   Z( LDZ, * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZHEGVX computes selected eigenvalues, and optionally, eigenvectors
   44: *> of a complex generalized Hermitian-definite eigenproblem, of the form
   45: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
   46: *> B are assumed to be Hermitian and B is also positive definite.
   47: *> Eigenvalues and eigenvectors can be selected by specifying either a
   48: *> range of values or a range of indices for the desired eigenvalues.
   49: *> \endverbatim
   50: *
   51: *  Arguments:
   52: *  ==========
   53: *
   54: *> \param[in] ITYPE
   55: *> \verbatim
   56: *>          ITYPE is INTEGER
   57: *>          Specifies the problem type to be solved:
   58: *>          = 1:  A*x = (lambda)*B*x
   59: *>          = 2:  A*B*x = (lambda)*x
   60: *>          = 3:  B*A*x = (lambda)*x
   61: *> \endverbatim
   62: *>
   63: *> \param[in] JOBZ
   64: *> \verbatim
   65: *>          JOBZ is CHARACTER*1
   66: *>          = 'N':  Compute eigenvalues only;
   67: *>          = 'V':  Compute eigenvalues and eigenvectors.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] RANGE
   71: *> \verbatim
   72: *>          RANGE is CHARACTER*1
   73: *>          = 'A': all eigenvalues will be found.
   74: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   75: *>                 will be found.
   76: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] UPLO
   80: *> \verbatim
   81: *>          UPLO is CHARACTER*1
   82: *>          = 'U':  Upper triangles of A and B are stored;
   83: *>          = 'L':  Lower triangles of A and B are stored.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] N
   87: *> \verbatim
   88: *>          N is INTEGER
   89: *>          The order of the matrices A and B.  N >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in,out] A
   93: *> \verbatim
   94: *>          A is COMPLEX*16 array, dimension (LDA, N)
   95: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
   96: *>          leading N-by-N upper triangular part of A contains the
   97: *>          upper triangular part of the matrix A.  If UPLO = 'L',
   98: *>          the leading N-by-N lower triangular part of A contains
   99: *>          the lower triangular part of the matrix A.
  100: *>
  101: *>          On exit,  the lower triangle (if UPLO='L') or the upper
  102: *>          triangle (if UPLO='U') of A, including the diagonal, is
  103: *>          destroyed.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] LDA
  107: *> \verbatim
  108: *>          LDA is INTEGER
  109: *>          The leading dimension of the array A.  LDA >= max(1,N).
  110: *> \endverbatim
  111: *>
  112: *> \param[in,out] B
  113: *> \verbatim
  114: *>          B is COMPLEX*16 array, dimension (LDB, N)
  115: *>          On entry, the Hermitian matrix B.  If UPLO = 'U', the
  116: *>          leading N-by-N upper triangular part of B contains the
  117: *>          upper triangular part of the matrix B.  If UPLO = 'L',
  118: *>          the leading N-by-N lower triangular part of B contains
  119: *>          the lower triangular part of the matrix B.
  120: *>
  121: *>          On exit, if INFO <= N, the part of B containing the matrix is
  122: *>          overwritten by the triangular factor U or L from the Cholesky
  123: *>          factorization B = U**H*U or B = L*L**H.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] LDB
  127: *> \verbatim
  128: *>          LDB is INTEGER
  129: *>          The leading dimension of the array B.  LDB >= max(1,N).
  130: *> \endverbatim
  131: *>
  132: *> \param[in] VL
  133: *> \verbatim
  134: *>          VL is DOUBLE PRECISION
  135: *>
  136: *>          If RANGE='V', the lower bound of the interval to
  137: *>          be searched for eigenvalues. VL < VU.
  138: *>          Not referenced if RANGE = 'A' or 'I'.
  139: *> \endverbatim
  140: *>
  141: *> \param[in] VU
  142: *> \verbatim
  143: *>          VU is DOUBLE PRECISION
  144: *>
  145: *>          If RANGE='V', the upper bound of the interval to
  146: *>          be searched for eigenvalues. VL < VU.
  147: *>          Not referenced if RANGE = 'A' or 'I'.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] IL
  151: *> \verbatim
  152: *>          IL is INTEGER
  153: *>
  154: *>          If RANGE='I', the index of the
  155: *>          smallest eigenvalue to be returned.
  156: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  157: *>          Not referenced if RANGE = 'A' or 'V'.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] IU
  161: *> \verbatim
  162: *>          IU is INTEGER
  163: *>
  164: *>          If RANGE='I', the index of the
  165: *>          largest eigenvalue to be returned.
  166: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  167: *>          Not referenced if RANGE = 'A' or 'V'.
  168: *> \endverbatim
  169: *>
  170: *> \param[in] ABSTOL
  171: *> \verbatim
  172: *>          ABSTOL is DOUBLE PRECISION
  173: *>          The absolute error tolerance for the eigenvalues.
  174: *>          An approximate eigenvalue is accepted as converged
  175: *>          when it is determined to lie in an interval [a,b]
  176: *>          of width less than or equal to
  177: *>
  178: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  179: *>
  180: *>          where EPS is the machine precision.  If ABSTOL is less than
  181: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  182: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  183: *>          by reducing C to tridiagonal form, where C is the symmetric
  184: *>          matrix of the standard symmetric problem to which the
  185: *>          generalized problem is transformed.
  186: *>
  187: *>          Eigenvalues will be computed most accurately when ABSTOL is
  188: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  189: *>          If this routine returns with INFO>0, indicating that some
  190: *>          eigenvectors did not converge, try setting ABSTOL to
  191: *>          2*DLAMCH('S').
  192: *> \endverbatim
  193: *>
  194: *> \param[out] M
  195: *> \verbatim
  196: *>          M is INTEGER
  197: *>          The total number of eigenvalues found.  0 <= M <= N.
  198: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  199: *> \endverbatim
  200: *>
  201: *> \param[out] W
  202: *> \verbatim
  203: *>          W is DOUBLE PRECISION array, dimension (N)
  204: *>          The first M elements contain the selected
  205: *>          eigenvalues in ascending order.
  206: *> \endverbatim
  207: *>
  208: *> \param[out] Z
  209: *> \verbatim
  210: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  211: *>          If JOBZ = 'N', then Z is not referenced.
  212: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  213: *>          contain the orthonormal eigenvectors of the matrix A
  214: *>          corresponding to the selected eigenvalues, with the i-th
  215: *>          column of Z holding the eigenvector associated with W(i).
  216: *>          The eigenvectors are normalized as follows:
  217: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
  218: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
  219: *>
  220: *>          If an eigenvector fails to converge, then that column of Z
  221: *>          contains the latest approximation to the eigenvector, and the
  222: *>          index of the eigenvector is returned in IFAIL.
  223: *>          Note: the user must ensure that at least max(1,M) columns are
  224: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  225: *>          is not known in advance and an upper bound must be used.
  226: *> \endverbatim
  227: *>
  228: *> \param[in] LDZ
  229: *> \verbatim
  230: *>          LDZ is INTEGER
  231: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  232: *>          JOBZ = 'V', LDZ >= max(1,N).
  233: *> \endverbatim
  234: *>
  235: *> \param[out] WORK
  236: *> \verbatim
  237: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  238: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  239: *> \endverbatim
  240: *>
  241: *> \param[in] LWORK
  242: *> \verbatim
  243: *>          LWORK is INTEGER
  244: *>          The length of the array WORK.  LWORK >= max(1,2*N).
  245: *>          For optimal efficiency, LWORK >= (NB+1)*N,
  246: *>          where NB is the blocksize for ZHETRD returned by ILAENV.
  247: *>
  248: *>          If LWORK = -1, then a workspace query is assumed; the routine
  249: *>          only calculates the optimal size of the WORK array, returns
  250: *>          this value as the first entry of the WORK array, and no error
  251: *>          message related to LWORK is issued by XERBLA.
  252: *> \endverbatim
  253: *>
  254: *> \param[out] RWORK
  255: *> \verbatim
  256: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
  257: *> \endverbatim
  258: *>
  259: *> \param[out] IWORK
  260: *> \verbatim
  261: *>          IWORK is INTEGER array, dimension (5*N)
  262: *> \endverbatim
  263: *>
  264: *> \param[out] IFAIL
  265: *> \verbatim
  266: *>          IFAIL is INTEGER array, dimension (N)
  267: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  268: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  269: *>          indices of the eigenvectors that failed to converge.
  270: *>          If JOBZ = 'N', then IFAIL is not referenced.
  271: *> \endverbatim
  272: *>
  273: *> \param[out] INFO
  274: *> \verbatim
  275: *>          INFO is INTEGER
  276: *>          = 0:  successful exit
  277: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  278: *>          > 0:  ZPOTRF or ZHEEVX returned an error code:
  279: *>             <= N:  if INFO = i, ZHEEVX failed to converge;
  280: *>                    i eigenvectors failed to converge.  Their indices
  281: *>                    are stored in array IFAIL.
  282: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
  283: *>                    minor of order i of B is not positive definite.
  284: *>                    The factorization of B could not be completed and
  285: *>                    no eigenvalues or eigenvectors were computed.
  286: *> \endverbatim
  287: *
  288: *  Authors:
  289: *  ========
  290: *
  291: *> \author Univ. of Tennessee
  292: *> \author Univ. of California Berkeley
  293: *> \author Univ. of Colorado Denver
  294: *> \author NAG Ltd.
  295: *
  296: *> \ingroup complex16HEeigen
  297: *
  298: *> \par Contributors:
  299: *  ==================
  300: *>
  301: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  302: *
  303: *  =====================================================================
  304:       SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
  305:      $                   VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
  306:      $                   LWORK, RWORK, IWORK, IFAIL, INFO )
  307: *
  308: *  -- LAPACK driver routine --
  309: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  310: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  311: *
  312: *     .. Scalar Arguments ..
  313:       CHARACTER          JOBZ, RANGE, UPLO
  314:       INTEGER            IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
  315:       DOUBLE PRECISION   ABSTOL, VL, VU
  316: *     ..
  317: *     .. Array Arguments ..
  318:       INTEGER            IFAIL( * ), IWORK( * )
  319:       DOUBLE PRECISION   RWORK( * ), W( * )
  320:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
  321:      $                   Z( LDZ, * )
  322: *     ..
  323: *
  324: *  =====================================================================
  325: *
  326: *     .. Parameters ..
  327:       COMPLEX*16         CONE
  328:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  329: *     ..
  330: *     .. Local Scalars ..
  331:       LOGICAL            ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
  332:       CHARACTER          TRANS
  333:       INTEGER            LWKOPT, NB
  334: *     ..
  335: *     .. External Functions ..
  336:       LOGICAL            LSAME
  337:       INTEGER            ILAENV
  338:       EXTERNAL           LSAME, ILAENV
  339: *     ..
  340: *     .. External Subroutines ..
  341:       EXTERNAL           XERBLA, ZHEEVX, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
  342: *     ..
  343: *     .. Intrinsic Functions ..
  344:       INTRINSIC          MAX, MIN
  345: *     ..
  346: *     .. Executable Statements ..
  347: *
  348: *     Test the input parameters.
  349: *
  350:       WANTZ = LSAME( JOBZ, 'V' )
  351:       UPPER = LSAME( UPLO, 'U' )
  352:       ALLEIG = LSAME( RANGE, 'A' )
  353:       VALEIG = LSAME( RANGE, 'V' )
  354:       INDEIG = LSAME( RANGE, 'I' )
  355:       LQUERY = ( LWORK.EQ.-1 )
  356: *
  357:       INFO = 0
  358:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  359:          INFO = -1
  360:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  361:          INFO = -2
  362:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  363:          INFO = -3
  364:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  365:          INFO = -4
  366:       ELSE IF( N.LT.0 ) THEN
  367:          INFO = -5
  368:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  369:          INFO = -7
  370:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  371:          INFO = -9
  372:       ELSE
  373:          IF( VALEIG ) THEN
  374:             IF( N.GT.0 .AND. VU.LE.VL )
  375:      $         INFO = -11
  376:          ELSE IF( INDEIG ) THEN
  377:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  378:                INFO = -12
  379:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  380:                INFO = -13
  381:             END IF
  382:          END IF
  383:       END IF
  384:       IF (INFO.EQ.0) THEN
  385:          IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
  386:             INFO = -18
  387:          END IF
  388:       END IF
  389: *
  390:       IF( INFO.EQ.0 ) THEN
  391:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  392:          LWKOPT = MAX( 1, ( NB + 1 )*N )
  393:          WORK( 1 ) = LWKOPT
  394: *
  395:          IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  396:             INFO = -20
  397:          END IF
  398:       END IF
  399: *
  400:       IF( INFO.NE.0 ) THEN
  401:          CALL XERBLA( 'ZHEGVX', -INFO )
  402:          RETURN
  403:       ELSE IF( LQUERY ) THEN
  404:          RETURN
  405:       END IF
  406: *
  407: *     Quick return if possible
  408: *
  409:       M = 0
  410:       IF( N.EQ.0 ) THEN
  411:          RETURN
  412:       END IF
  413: *
  414: *     Form a Cholesky factorization of B.
  415: *
  416:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
  417:       IF( INFO.NE.0 ) THEN
  418:          INFO = N + INFO
  419:          RETURN
  420:       END IF
  421: *
  422: *     Transform problem to standard eigenvalue problem and solve.
  423: *
  424:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  425:       CALL ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
  426:      $             M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL,
  427:      $             INFO )
  428: *
  429:       IF( WANTZ ) THEN
  430: *
  431: *        Backtransform eigenvectors to the original problem.
  432: *
  433:          IF( INFO.GT.0 )
  434:      $      M = INFO - 1
  435:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  436: *
  437: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  438: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
  439: *
  440:             IF( UPPER ) THEN
  441:                TRANS = 'N'
  442:             ELSE
  443:                TRANS = 'C'
  444:             END IF
  445: *
  446:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
  447:      $                  LDB, Z, LDZ )
  448: *
  449:          ELSE IF( ITYPE.EQ.3 ) THEN
  450: *
  451: *           For B*A*x=(lambda)*x;
  452: *           backtransform eigenvectors: x = L*y or U**H *y
  453: *
  454:             IF( UPPER ) THEN
  455:                TRANS = 'C'
  456:             ELSE
  457:                TRANS = 'N'
  458:             END IF
  459: *
  460:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
  461:      $                  LDB, Z, LDZ )
  462:          END IF
  463:       END IF
  464: *
  465: *     Set WORK(1) to optimal complex workspace size.
  466: *
  467:       WORK( 1 ) = LWKOPT
  468: *
  469:       RETURN
  470: *
  471: *     End of ZHEGVX
  472: *
  473:       END

CVSweb interface <joel.bertrand@systella.fr>