File:  [local] / rpl / lapack / lapack / zhegvx.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:05 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
    2:      $                   VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
    3:      $                   LWORK, RWORK, IWORK, IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IFAIL( * ), IWORK( * )
   17:       DOUBLE PRECISION   RWORK( * ), W( * )
   18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
   19:      $                   Z( LDZ, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZHEGVX computes selected eigenvalues, and optionally, eigenvectors
   26: *  of a complex generalized Hermitian-definite eigenproblem, of the form
   27: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
   28: *  B are assumed to be Hermitian and B is also positive definite.
   29: *  Eigenvalues and eigenvectors can be selected by specifying either a
   30: *  range of values or a range of indices for the desired eigenvalues.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  ITYPE   (input) INTEGER
   36: *          Specifies the problem type to be solved:
   37: *          = 1:  A*x = (lambda)*B*x
   38: *          = 2:  A*B*x = (lambda)*x
   39: *          = 3:  B*A*x = (lambda)*x
   40: *
   41: *  JOBZ    (input) CHARACTER*1
   42: *          = 'N':  Compute eigenvalues only;
   43: *          = 'V':  Compute eigenvalues and eigenvectors.
   44: *
   45: *  RANGE   (input) CHARACTER*1
   46: *          = 'A': all eigenvalues will be found.
   47: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   48: *                 will be found.
   49: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   50: **
   51: *  UPLO    (input) CHARACTER*1
   52: *          = 'U':  Upper triangles of A and B are stored;
   53: *          = 'L':  Lower triangles of A and B are stored.
   54: *
   55: *  N       (input) INTEGER
   56: *          The order of the matrices A and B.  N >= 0.
   57: *
   58: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
   59: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
   60: *          leading N-by-N upper triangular part of A contains the
   61: *          upper triangular part of the matrix A.  If UPLO = 'L',
   62: *          the leading N-by-N lower triangular part of A contains
   63: *          the lower triangular part of the matrix A.
   64: *
   65: *          On exit,  the lower triangle (if UPLO='L') or the upper
   66: *          triangle (if UPLO='U') of A, including the diagonal, is
   67: *          destroyed.
   68: *
   69: *  LDA     (input) INTEGER
   70: *          The leading dimension of the array A.  LDA >= max(1,N).
   71: *
   72: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
   73: *          On entry, the Hermitian matrix B.  If UPLO = 'U', the
   74: *          leading N-by-N upper triangular part of B contains the
   75: *          upper triangular part of the matrix B.  If UPLO = 'L',
   76: *          the leading N-by-N lower triangular part of B contains
   77: *          the lower triangular part of the matrix B.
   78: *
   79: *          On exit, if INFO <= N, the part of B containing the matrix is
   80: *          overwritten by the triangular factor U or L from the Cholesky
   81: *          factorization B = U**H*U or B = L*L**H.
   82: *
   83: *  LDB     (input) INTEGER
   84: *          The leading dimension of the array B.  LDB >= max(1,N).
   85: *
   86: *  VL      (input) DOUBLE PRECISION
   87: *  VU      (input) DOUBLE PRECISION
   88: *          If RANGE='V', the lower and upper bounds of the interval to
   89: *          be searched for eigenvalues. VL < VU.
   90: *          Not referenced if RANGE = 'A' or 'I'.
   91: *
   92: *  IL      (input) INTEGER
   93: *  IU      (input) INTEGER
   94: *          If RANGE='I', the indices (in ascending order) of the
   95: *          smallest and largest eigenvalues to be returned.
   96: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   97: *          Not referenced if RANGE = 'A' or 'V'.
   98: *
   99: *  ABSTOL  (input) DOUBLE PRECISION
  100: *          The absolute error tolerance for the eigenvalues.
  101: *          An approximate eigenvalue is accepted as converged
  102: *          when it is determined to lie in an interval [a,b]
  103: *          of width less than or equal to
  104: *
  105: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
  106: *
  107: *          where EPS is the machine precision.  If ABSTOL is less than
  108: *          or equal to zero, then  EPS*|T|  will be used in its place,
  109: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  110: *          by reducing A to tridiagonal form.
  111: *
  112: *          Eigenvalues will be computed most accurately when ABSTOL is
  113: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  114: *          If this routine returns with INFO>0, indicating that some
  115: *          eigenvectors did not converge, try setting ABSTOL to
  116: *          2*DLAMCH('S').
  117: *
  118: *  M       (output) INTEGER
  119: *          The total number of eigenvalues found.  0 <= M <= N.
  120: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  121: *
  122: *  W       (output) DOUBLE PRECISION array, dimension (N)
  123: *          The first M elements contain the selected
  124: *          eigenvalues in ascending order.
  125: *
  126: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
  127: *          If JOBZ = 'N', then Z is not referenced.
  128: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  129: *          contain the orthonormal eigenvectors of the matrix A
  130: *          corresponding to the selected eigenvalues, with the i-th
  131: *          column of Z holding the eigenvector associated with W(i).
  132: *          The eigenvectors are normalized as follows:
  133: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
  134: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
  135: *
  136: *          If an eigenvector fails to converge, then that column of Z
  137: *          contains the latest approximation to the eigenvector, and the
  138: *          index of the eigenvector is returned in IFAIL.
  139: *          Note: the user must ensure that at least max(1,M) columns are
  140: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  141: *          is not known in advance and an upper bound must be used.
  142: *
  143: *  LDZ     (input) INTEGER
  144: *          The leading dimension of the array Z.  LDZ >= 1, and if
  145: *          JOBZ = 'V', LDZ >= max(1,N).
  146: *
  147: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  148: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  149: *
  150: *  LWORK   (input) INTEGER
  151: *          The length of the array WORK.  LWORK >= max(1,2*N).
  152: *          For optimal efficiency, LWORK >= (NB+1)*N,
  153: *          where NB is the blocksize for ZHETRD returned by ILAENV.
  154: *
  155: *          If LWORK = -1, then a workspace query is assumed; the routine
  156: *          only calculates the optimal size of the WORK array, returns
  157: *          this value as the first entry of the WORK array, and no error
  158: *          message related to LWORK is issued by XERBLA.
  159: *
  160: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
  161: *
  162: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  163: *
  164: *  IFAIL   (output) INTEGER array, dimension (N)
  165: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  166: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  167: *          indices of the eigenvectors that failed to converge.
  168: *          If JOBZ = 'N', then IFAIL is not referenced.
  169: *
  170: *  INFO    (output) INTEGER
  171: *          = 0:  successful exit
  172: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  173: *          > 0:  ZPOTRF or ZHEEVX returned an error code:
  174: *             <= N:  if INFO = i, ZHEEVX failed to converge;
  175: *                    i eigenvectors failed to converge.  Their indices
  176: *                    are stored in array IFAIL.
  177: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
  178: *                    minor of order i of B is not positive definite.
  179: *                    The factorization of B could not be completed and
  180: *                    no eigenvalues or eigenvectors were computed.
  181: *
  182: *  Further Details
  183: *  ===============
  184: *
  185: *  Based on contributions by
  186: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  187: *
  188: *  =====================================================================
  189: *
  190: *     .. Parameters ..
  191:       COMPLEX*16         CONE
  192:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  193: *     ..
  194: *     .. Local Scalars ..
  195:       LOGICAL            ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
  196:       CHARACTER          TRANS
  197:       INTEGER            LWKOPT, NB
  198: *     ..
  199: *     .. External Functions ..
  200:       LOGICAL            LSAME
  201:       INTEGER            ILAENV
  202:       EXTERNAL           LSAME, ILAENV
  203: *     ..
  204: *     .. External Subroutines ..
  205:       EXTERNAL           XERBLA, ZHEEVX, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
  206: *     ..
  207: *     .. Intrinsic Functions ..
  208:       INTRINSIC          MAX, MIN
  209: *     ..
  210: *     .. Executable Statements ..
  211: *
  212: *     Test the input parameters.
  213: *
  214:       WANTZ = LSAME( JOBZ, 'V' )
  215:       UPPER = LSAME( UPLO, 'U' )
  216:       ALLEIG = LSAME( RANGE, 'A' )
  217:       VALEIG = LSAME( RANGE, 'V' )
  218:       INDEIG = LSAME( RANGE, 'I' )
  219:       LQUERY = ( LWORK.EQ.-1 )
  220: *
  221:       INFO = 0
  222:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  223:          INFO = -1
  224:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  225:          INFO = -2
  226:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  227:          INFO = -3
  228:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  229:          INFO = -4
  230:       ELSE IF( N.LT.0 ) THEN
  231:          INFO = -5
  232:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  233:          INFO = -7
  234:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  235:          INFO = -9
  236:       ELSE
  237:          IF( VALEIG ) THEN
  238:             IF( N.GT.0 .AND. VU.LE.VL )
  239:      $         INFO = -11
  240:          ELSE IF( INDEIG ) THEN
  241:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  242:                INFO = -12
  243:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  244:                INFO = -13
  245:             END IF
  246:          END IF
  247:       END IF
  248:       IF (INFO.EQ.0) THEN
  249:          IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
  250:             INFO = -18
  251:          END IF
  252:       END IF
  253: *
  254:       IF( INFO.EQ.0 ) THEN
  255:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  256:          LWKOPT = MAX( 1, ( NB + 1 )*N )
  257:          WORK( 1 ) = LWKOPT
  258: *
  259:          IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  260:             INFO = -20
  261:          END IF
  262:       END IF
  263: *
  264:       IF( INFO.NE.0 ) THEN
  265:          CALL XERBLA( 'ZHEGVX', -INFO )
  266:          RETURN
  267:       ELSE IF( LQUERY ) THEN
  268:          RETURN
  269:       END IF
  270: *
  271: *     Quick return if possible
  272: *
  273:       M = 0
  274:       IF( N.EQ.0 ) THEN
  275:          RETURN
  276:       END IF
  277: *
  278: *     Form a Cholesky factorization of B.
  279: *
  280:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
  281:       IF( INFO.NE.0 ) THEN
  282:          INFO = N + INFO
  283:          RETURN
  284:       END IF
  285: *
  286: *     Transform problem to standard eigenvalue problem and solve.
  287: *
  288:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  289:       CALL ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
  290:      $             M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL,
  291:      $             INFO )
  292: *
  293:       IF( WANTZ ) THEN
  294: *
  295: *        Backtransform eigenvectors to the original problem.
  296: *
  297:          IF( INFO.GT.0 )
  298:      $      M = INFO - 1
  299:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  300: *
  301: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  302: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
  303: *
  304:             IF( UPPER ) THEN
  305:                TRANS = 'N'
  306:             ELSE
  307:                TRANS = 'C'
  308:             END IF
  309: *
  310:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
  311:      $                  LDB, Z, LDZ )
  312: *
  313:          ELSE IF( ITYPE.EQ.3 ) THEN
  314: *
  315: *           For B*A*x=(lambda)*x;
  316: *           backtransform eigenvectors: x = L*y or U'*y
  317: *
  318:             IF( UPPER ) THEN
  319:                TRANS = 'C'
  320:             ELSE
  321:                TRANS = 'N'
  322:             END IF
  323: *
  324:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
  325:      $                  LDB, Z, LDZ )
  326:          END IF
  327:       END IF
  328: *
  329: *     Set WORK(1) to optimal complex workspace size.
  330: *
  331:       WORK( 1 ) = LWKOPT
  332: *
  333:       RETURN
  334: *
  335: *     End of ZHEGVX
  336: *
  337:       END

CVSweb interface <joel.bertrand@systella.fr>