Annotation of rpl/lapack/lapack/zhegvx.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
                      2:      $                   VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
                      3:      $                   LWORK, RWORK, IWORK, IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IFAIL( * ), IWORK( * )
                     17:       DOUBLE PRECISION   RWORK( * ), W( * )
                     18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
                     19:      $                   Z( LDZ, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  ZHEGVX computes selected eigenvalues, and optionally, eigenvectors
                     26: *  of a complex generalized Hermitian-definite eigenproblem, of the form
                     27: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     28: *  B are assumed to be Hermitian and B is also positive definite.
                     29: *  Eigenvalues and eigenvectors can be selected by specifying either a
                     30: *  range of values or a range of indices for the desired eigenvalues.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  ITYPE   (input) INTEGER
                     36: *          Specifies the problem type to be solved:
                     37: *          = 1:  A*x = (lambda)*B*x
                     38: *          = 2:  A*B*x = (lambda)*x
                     39: *          = 3:  B*A*x = (lambda)*x
                     40: *
                     41: *  JOBZ    (input) CHARACTER*1
                     42: *          = 'N':  Compute eigenvalues only;
                     43: *          = 'V':  Compute eigenvalues and eigenvectors.
                     44: *
                     45: *  RANGE   (input) CHARACTER*1
                     46: *          = 'A': all eigenvalues will be found.
                     47: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     48: *                 will be found.
                     49: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     50: **
                     51: *  UPLO    (input) CHARACTER*1
                     52: *          = 'U':  Upper triangles of A and B are stored;
                     53: *          = 'L':  Lower triangles of A and B are stored.
                     54: *
                     55: *  N       (input) INTEGER
                     56: *          The order of the matrices A and B.  N >= 0.
                     57: *
                     58: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     59: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     60: *          leading N-by-N upper triangular part of A contains the
                     61: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     62: *          the leading N-by-N lower triangular part of A contains
                     63: *          the lower triangular part of the matrix A.
                     64: *
                     65: *          On exit,  the lower triangle (if UPLO='L') or the upper
                     66: *          triangle (if UPLO='U') of A, including the diagonal, is
                     67: *          destroyed.
                     68: *
                     69: *  LDA     (input) INTEGER
                     70: *          The leading dimension of the array A.  LDA >= max(1,N).
                     71: *
                     72: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
                     73: *          On entry, the Hermitian matrix B.  If UPLO = 'U', the
                     74: *          leading N-by-N upper triangular part of B contains the
                     75: *          upper triangular part of the matrix B.  If UPLO = 'L',
                     76: *          the leading N-by-N lower triangular part of B contains
                     77: *          the lower triangular part of the matrix B.
                     78: *
                     79: *          On exit, if INFO <= N, the part of B containing the matrix is
                     80: *          overwritten by the triangular factor U or L from the Cholesky
                     81: *          factorization B = U**H*U or B = L*L**H.
                     82: *
                     83: *  LDB     (input) INTEGER
                     84: *          The leading dimension of the array B.  LDB >= max(1,N).
                     85: *
                     86: *  VL      (input) DOUBLE PRECISION
                     87: *  VU      (input) DOUBLE PRECISION
                     88: *          If RANGE='V', the lower and upper bounds of the interval to
                     89: *          be searched for eigenvalues. VL < VU.
                     90: *          Not referenced if RANGE = 'A' or 'I'.
                     91: *
                     92: *  IL      (input) INTEGER
                     93: *  IU      (input) INTEGER
                     94: *          If RANGE='I', the indices (in ascending order) of the
                     95: *          smallest and largest eigenvalues to be returned.
                     96: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     97: *          Not referenced if RANGE = 'A' or 'V'.
                     98: *
                     99: *  ABSTOL  (input) DOUBLE PRECISION
                    100: *          The absolute error tolerance for the eigenvalues.
                    101: *          An approximate eigenvalue is accepted as converged
                    102: *          when it is determined to lie in an interval [a,b]
                    103: *          of width less than or equal to
                    104: *
                    105: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    106: *
                    107: *          where EPS is the machine precision.  If ABSTOL is less than
                    108: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    109: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    110: *          by reducing A to tridiagonal form.
                    111: *
                    112: *          Eigenvalues will be computed most accurately when ABSTOL is
                    113: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    114: *          If this routine returns with INFO>0, indicating that some
                    115: *          eigenvectors did not converge, try setting ABSTOL to
                    116: *          2*DLAMCH('S').
                    117: *
                    118: *  M       (output) INTEGER
                    119: *          The total number of eigenvalues found.  0 <= M <= N.
                    120: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    121: *
                    122: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    123: *          The first M elements contain the selected
                    124: *          eigenvalues in ascending order.
                    125: *
                    126: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
                    127: *          If JOBZ = 'N', then Z is not referenced.
                    128: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    129: *          contain the orthonormal eigenvectors of the matrix A
                    130: *          corresponding to the selected eigenvalues, with the i-th
                    131: *          column of Z holding the eigenvector associated with W(i).
                    132: *          The eigenvectors are normalized as follows:
                    133: *          if ITYPE = 1 or 2, Z**T*B*Z = I;
                    134: *          if ITYPE = 3, Z**T*inv(B)*Z = I.
                    135: *
                    136: *          If an eigenvector fails to converge, then that column of Z
                    137: *          contains the latest approximation to the eigenvector, and the
                    138: *          index of the eigenvector is returned in IFAIL.
                    139: *          Note: the user must ensure that at least max(1,M) columns are
                    140: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    141: *          is not known in advance and an upper bound must be used.
                    142: *
                    143: *  LDZ     (input) INTEGER
                    144: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    145: *          JOBZ = 'V', LDZ >= max(1,N).
                    146: *
                    147: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    148: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    149: *
                    150: *  LWORK   (input) INTEGER
                    151: *          The length of the array WORK.  LWORK >= max(1,2*N).
                    152: *          For optimal efficiency, LWORK >= (NB+1)*N,
                    153: *          where NB is the blocksize for ZHETRD returned by ILAENV.
                    154: *
                    155: *          If LWORK = -1, then a workspace query is assumed; the routine
                    156: *          only calculates the optimal size of the WORK array, returns
                    157: *          this value as the first entry of the WORK array, and no error
                    158: *          message related to LWORK is issued by XERBLA.
                    159: *
                    160: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
                    161: *
                    162: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    163: *
                    164: *  IFAIL   (output) INTEGER array, dimension (N)
                    165: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    166: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    167: *          indices of the eigenvectors that failed to converge.
                    168: *          If JOBZ = 'N', then IFAIL is not referenced.
                    169: *
                    170: *  INFO    (output) INTEGER
                    171: *          = 0:  successful exit
                    172: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    173: *          > 0:  ZPOTRF or ZHEEVX returned an error code:
                    174: *             <= N:  if INFO = i, ZHEEVX failed to converge;
                    175: *                    i eigenvectors failed to converge.  Their indices
                    176: *                    are stored in array IFAIL.
                    177: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    178: *                    minor of order i of B is not positive definite.
                    179: *                    The factorization of B could not be completed and
                    180: *                    no eigenvalues or eigenvectors were computed.
                    181: *
                    182: *  Further Details
                    183: *  ===============
                    184: *
                    185: *  Based on contributions by
                    186: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    187: *
                    188: *  =====================================================================
                    189: *
                    190: *     .. Parameters ..
                    191:       COMPLEX*16         CONE
                    192:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    193: *     ..
                    194: *     .. Local Scalars ..
                    195:       LOGICAL            ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
                    196:       CHARACTER          TRANS
                    197:       INTEGER            LWKOPT, NB
                    198: *     ..
                    199: *     .. External Functions ..
                    200:       LOGICAL            LSAME
                    201:       INTEGER            ILAENV
                    202:       EXTERNAL           LSAME, ILAENV
                    203: *     ..
                    204: *     .. External Subroutines ..
                    205:       EXTERNAL           XERBLA, ZHEEVX, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
                    206: *     ..
                    207: *     .. Intrinsic Functions ..
                    208:       INTRINSIC          MAX, MIN
                    209: *     ..
                    210: *     .. Executable Statements ..
                    211: *
                    212: *     Test the input parameters.
                    213: *
                    214:       WANTZ = LSAME( JOBZ, 'V' )
                    215:       UPPER = LSAME( UPLO, 'U' )
                    216:       ALLEIG = LSAME( RANGE, 'A' )
                    217:       VALEIG = LSAME( RANGE, 'V' )
                    218:       INDEIG = LSAME( RANGE, 'I' )
                    219:       LQUERY = ( LWORK.EQ.-1 )
                    220: *
                    221:       INFO = 0
                    222:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    223:          INFO = -1
                    224:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    225:          INFO = -2
                    226:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    227:          INFO = -3
                    228:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    229:          INFO = -4
                    230:       ELSE IF( N.LT.0 ) THEN
                    231:          INFO = -5
                    232:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    233:          INFO = -7
                    234:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    235:          INFO = -9
                    236:       ELSE
                    237:          IF( VALEIG ) THEN
                    238:             IF( N.GT.0 .AND. VU.LE.VL )
                    239:      $         INFO = -11
                    240:          ELSE IF( INDEIG ) THEN
                    241:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    242:                INFO = -12
                    243:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    244:                INFO = -13
                    245:             END IF
                    246:          END IF
                    247:       END IF
                    248:       IF (INFO.EQ.0) THEN
                    249:          IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
                    250:             INFO = -18
                    251:          END IF
                    252:       END IF
                    253: *
                    254:       IF( INFO.EQ.0 ) THEN
                    255:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    256:          LWKOPT = MAX( 1, ( NB + 1 )*N )
                    257:          WORK( 1 ) = LWKOPT
                    258: *
                    259:          IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
                    260:             INFO = -20
                    261:          END IF
                    262:       END IF
                    263: *
                    264:       IF( INFO.NE.0 ) THEN
                    265:          CALL XERBLA( 'ZHEGVX', -INFO )
                    266:          RETURN
                    267:       ELSE IF( LQUERY ) THEN
                    268:          RETURN
                    269:       END IF
                    270: *
                    271: *     Quick return if possible
                    272: *
                    273:       M = 0
                    274:       IF( N.EQ.0 ) THEN
                    275:          RETURN
                    276:       END IF
                    277: *
                    278: *     Form a Cholesky factorization of B.
                    279: *
                    280:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
                    281:       IF( INFO.NE.0 ) THEN
                    282:          INFO = N + INFO
                    283:          RETURN
                    284:       END IF
                    285: *
                    286: *     Transform problem to standard eigenvalue problem and solve.
                    287: *
                    288:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    289:       CALL ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
                    290:      $             M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL,
                    291:      $             INFO )
                    292: *
                    293:       IF( WANTZ ) THEN
                    294: *
                    295: *        Backtransform eigenvectors to the original problem.
                    296: *
                    297:          IF( INFO.GT.0 )
                    298:      $      M = INFO - 1
                    299:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    300: *
                    301: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
                    302: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
                    303: *
                    304:             IF( UPPER ) THEN
                    305:                TRANS = 'N'
                    306:             ELSE
                    307:                TRANS = 'C'
                    308:             END IF
                    309: *
                    310:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
                    311:      $                  LDB, Z, LDZ )
                    312: *
                    313:          ELSE IF( ITYPE.EQ.3 ) THEN
                    314: *
                    315: *           For B*A*x=(lambda)*x;
                    316: *           backtransform eigenvectors: x = L*y or U'*y
                    317: *
                    318:             IF( UPPER ) THEN
                    319:                TRANS = 'C'
                    320:             ELSE
                    321:                TRANS = 'N'
                    322:             END IF
                    323: *
                    324:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
                    325:      $                  LDB, Z, LDZ )
                    326:          END IF
                    327:       END IF
                    328: *
                    329: *     Set WORK(1) to optimal complex workspace size.
                    330: *
                    331:       WORK( 1 ) = LWKOPT
                    332: *
                    333:       RETURN
                    334: *
                    335: *     End of ZHEGVX
                    336: *
                    337:       END

CVSweb interface <joel.bertrand@systella.fr>