Annotation of rpl/lapack/lapack/zhegvx.f, revision 1.12

1.9       bertrand    1: *> \brief \b ZHEGST
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHEGVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
                     22: *                          VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
                     23: *                          LWORK, RWORK, IWORK, IFAIL, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBZ, RANGE, UPLO
                     27: *       INTEGER            IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
                     28: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IFAIL( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     33: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
                     34: *      $                   Z( LDZ, * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> ZHEGVX computes selected eigenvalues, and optionally, eigenvectors
                     44: *> of a complex generalized Hermitian-definite eigenproblem, of the form
                     45: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     46: *> B are assumed to be Hermitian and B is also positive definite.
                     47: *> Eigenvalues and eigenvectors can be selected by specifying either a
                     48: *> range of values or a range of indices for the desired eigenvalues.
                     49: *> \endverbatim
                     50: *
                     51: *  Arguments:
                     52: *  ==========
                     53: *
                     54: *> \param[in] ITYPE
                     55: *> \verbatim
                     56: *>          ITYPE is INTEGER
                     57: *>          Specifies the problem type to be solved:
                     58: *>          = 1:  A*x = (lambda)*B*x
                     59: *>          = 2:  A*B*x = (lambda)*x
                     60: *>          = 3:  B*A*x = (lambda)*x
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] JOBZ
                     64: *> \verbatim
                     65: *>          JOBZ is CHARACTER*1
                     66: *>          = 'N':  Compute eigenvalues only;
                     67: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] RANGE
                     71: *> \verbatim
                     72: *>          RANGE is CHARACTER*1
                     73: *>          = 'A': all eigenvalues will be found.
                     74: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     75: *>                 will be found.
                     76: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] UPLO
                     80: *> \verbatim
                     81: *>          UPLO is CHARACTER*1
                     82: *>          = 'U':  Upper triangles of A and B are stored;
                     83: *>          = 'L':  Lower triangles of A and B are stored.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] N
                     87: *> \verbatim
                     88: *>          N is INTEGER
                     89: *>          The order of the matrices A and B.  N >= 0.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in,out] A
                     93: *> \verbatim
                     94: *>          A is COMPLEX*16 array, dimension (LDA, N)
                     95: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     96: *>          leading N-by-N upper triangular part of A contains the
                     97: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     98: *>          the leading N-by-N lower triangular part of A contains
                     99: *>          the lower triangular part of the matrix A.
                    100: *>
                    101: *>          On exit,  the lower triangle (if UPLO='L') or the upper
                    102: *>          triangle (if UPLO='U') of A, including the diagonal, is
                    103: *>          destroyed.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] LDA
                    107: *> \verbatim
                    108: *>          LDA is INTEGER
                    109: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in,out] B
                    113: *> \verbatim
                    114: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    115: *>          On entry, the Hermitian matrix B.  If UPLO = 'U', the
                    116: *>          leading N-by-N upper triangular part of B contains the
                    117: *>          upper triangular part of the matrix B.  If UPLO = 'L',
                    118: *>          the leading N-by-N lower triangular part of B contains
                    119: *>          the lower triangular part of the matrix B.
                    120: *>
                    121: *>          On exit, if INFO <= N, the part of B containing the matrix is
                    122: *>          overwritten by the triangular factor U or L from the Cholesky
                    123: *>          factorization B = U**H*U or B = L*L**H.
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in] LDB
                    127: *> \verbatim
                    128: *>          LDB is INTEGER
                    129: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] VL
                    133: *> \verbatim
                    134: *>          VL is DOUBLE PRECISION
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] VU
                    138: *> \verbatim
                    139: *>          VU is DOUBLE PRECISION
                    140: *>
                    141: *>          If RANGE='V', the lower and upper bounds of the interval to
                    142: *>          be searched for eigenvalues. VL < VU.
                    143: *>          Not referenced if RANGE = 'A' or 'I'.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in] IL
                    147: *> \verbatim
                    148: *>          IL is INTEGER
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[in] IU
                    152: *> \verbatim
                    153: *>          IU is INTEGER
                    154: *>
                    155: *>          If RANGE='I', the indices (in ascending order) of the
                    156: *>          smallest and largest eigenvalues to be returned.
                    157: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    158: *>          Not referenced if RANGE = 'A' or 'V'.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in] ABSTOL
                    162: *> \verbatim
                    163: *>          ABSTOL is DOUBLE PRECISION
                    164: *>          The absolute error tolerance for the eigenvalues.
                    165: *>          An approximate eigenvalue is accepted as converged
                    166: *>          when it is determined to lie in an interval [a,b]
                    167: *>          of width less than or equal to
                    168: *>
                    169: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    170: *>
                    171: *>          where EPS is the machine precision.  If ABSTOL is less than
                    172: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    173: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    174: *>          by reducing C to tridiagonal form, where C is the symmetric
                    175: *>          matrix of the standard symmetric problem to which the
                    176: *>          generalized problem is transformed.
                    177: *>
                    178: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    179: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    180: *>          If this routine returns with INFO>0, indicating that some
                    181: *>          eigenvectors did not converge, try setting ABSTOL to
                    182: *>          2*DLAMCH('S').
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] M
                    186: *> \verbatim
                    187: *>          M is INTEGER
                    188: *>          The total number of eigenvalues found.  0 <= M <= N.
                    189: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[out] W
                    193: *> \verbatim
                    194: *>          W is DOUBLE PRECISION array, dimension (N)
                    195: *>          The first M elements contain the selected
                    196: *>          eigenvalues in ascending order.
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[out] Z
                    200: *> \verbatim
                    201: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
                    202: *>          If JOBZ = 'N', then Z is not referenced.
                    203: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    204: *>          contain the orthonormal eigenvectors of the matrix A
                    205: *>          corresponding to the selected eigenvalues, with the i-th
                    206: *>          column of Z holding the eigenvector associated with W(i).
                    207: *>          The eigenvectors are normalized as follows:
                    208: *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
                    209: *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
                    210: *>
                    211: *>          If an eigenvector fails to converge, then that column of Z
                    212: *>          contains the latest approximation to the eigenvector, and the
                    213: *>          index of the eigenvector is returned in IFAIL.
                    214: *>          Note: the user must ensure that at least max(1,M) columns are
                    215: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    216: *>          is not known in advance and an upper bound must be used.
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[in] LDZ
                    220: *> \verbatim
                    221: *>          LDZ is INTEGER
                    222: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    223: *>          JOBZ = 'V', LDZ >= max(1,N).
                    224: *> \endverbatim
                    225: *>
                    226: *> \param[out] WORK
                    227: *> \verbatim
                    228: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    229: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    230: *> \endverbatim
                    231: *>
                    232: *> \param[in] LWORK
                    233: *> \verbatim
                    234: *>          LWORK is INTEGER
                    235: *>          The length of the array WORK.  LWORK >= max(1,2*N).
                    236: *>          For optimal efficiency, LWORK >= (NB+1)*N,
                    237: *>          where NB is the blocksize for ZHETRD returned by ILAENV.
                    238: *>
                    239: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    240: *>          only calculates the optimal size of the WORK array, returns
                    241: *>          this value as the first entry of the WORK array, and no error
                    242: *>          message related to LWORK is issued by XERBLA.
                    243: *> \endverbatim
                    244: *>
                    245: *> \param[out] RWORK
                    246: *> \verbatim
                    247: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
                    248: *> \endverbatim
                    249: *>
                    250: *> \param[out] IWORK
                    251: *> \verbatim
                    252: *>          IWORK is INTEGER array, dimension (5*N)
                    253: *> \endverbatim
                    254: *>
                    255: *> \param[out] IFAIL
                    256: *> \verbatim
                    257: *>          IFAIL is INTEGER array, dimension (N)
                    258: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    259: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    260: *>          indices of the eigenvectors that failed to converge.
                    261: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    262: *> \endverbatim
                    263: *>
                    264: *> \param[out] INFO
                    265: *> \verbatim
                    266: *>          INFO is INTEGER
                    267: *>          = 0:  successful exit
                    268: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    269: *>          > 0:  ZPOTRF or ZHEEVX returned an error code:
                    270: *>             <= N:  if INFO = i, ZHEEVX failed to converge;
                    271: *>                    i eigenvectors failed to converge.  Their indices
                    272: *>                    are stored in array IFAIL.
                    273: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    274: *>                    minor of order i of B is not positive definite.
                    275: *>                    The factorization of B could not be completed and
                    276: *>                    no eigenvalues or eigenvectors were computed.
                    277: *> \endverbatim
                    278: *
                    279: *  Authors:
                    280: *  ========
                    281: *
                    282: *> \author Univ. of Tennessee 
                    283: *> \author Univ. of California Berkeley 
                    284: *> \author Univ. of Colorado Denver 
                    285: *> \author NAG Ltd. 
                    286: *
                    287: *> \date November 2011
                    288: *
                    289: *> \ingroup complex16HEeigen
                    290: *
                    291: *> \par Contributors:
                    292: *  ==================
                    293: *>
                    294: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    295: *
                    296: *  =====================================================================
1.1       bertrand  297:       SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
                    298:      $                   VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
                    299:      $                   LWORK, RWORK, IWORK, IFAIL, INFO )
                    300: *
1.9       bertrand  301: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  302: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    303: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  304: *     November 2011
1.1       bertrand  305: *
                    306: *     .. Scalar Arguments ..
                    307:       CHARACTER          JOBZ, RANGE, UPLO
                    308:       INTEGER            IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
                    309:       DOUBLE PRECISION   ABSTOL, VL, VU
                    310: *     ..
                    311: *     .. Array Arguments ..
                    312:       INTEGER            IFAIL( * ), IWORK( * )
                    313:       DOUBLE PRECISION   RWORK( * ), W( * )
                    314:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
                    315:      $                   Z( LDZ, * )
                    316: *     ..
                    317: *
                    318: *  =====================================================================
                    319: *
                    320: *     .. Parameters ..
                    321:       COMPLEX*16         CONE
                    322:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    323: *     ..
                    324: *     .. Local Scalars ..
                    325:       LOGICAL            ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
                    326:       CHARACTER          TRANS
                    327:       INTEGER            LWKOPT, NB
                    328: *     ..
                    329: *     .. External Functions ..
                    330:       LOGICAL            LSAME
                    331:       INTEGER            ILAENV
                    332:       EXTERNAL           LSAME, ILAENV
                    333: *     ..
                    334: *     .. External Subroutines ..
                    335:       EXTERNAL           XERBLA, ZHEEVX, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
                    336: *     ..
                    337: *     .. Intrinsic Functions ..
                    338:       INTRINSIC          MAX, MIN
                    339: *     ..
                    340: *     .. Executable Statements ..
                    341: *
                    342: *     Test the input parameters.
                    343: *
                    344:       WANTZ = LSAME( JOBZ, 'V' )
                    345:       UPPER = LSAME( UPLO, 'U' )
                    346:       ALLEIG = LSAME( RANGE, 'A' )
                    347:       VALEIG = LSAME( RANGE, 'V' )
                    348:       INDEIG = LSAME( RANGE, 'I' )
                    349:       LQUERY = ( LWORK.EQ.-1 )
                    350: *
                    351:       INFO = 0
                    352:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    353:          INFO = -1
                    354:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    355:          INFO = -2
                    356:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    357:          INFO = -3
                    358:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    359:          INFO = -4
                    360:       ELSE IF( N.LT.0 ) THEN
                    361:          INFO = -5
                    362:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    363:          INFO = -7
                    364:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    365:          INFO = -9
                    366:       ELSE
                    367:          IF( VALEIG ) THEN
                    368:             IF( N.GT.0 .AND. VU.LE.VL )
                    369:      $         INFO = -11
                    370:          ELSE IF( INDEIG ) THEN
                    371:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    372:                INFO = -12
                    373:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    374:                INFO = -13
                    375:             END IF
                    376:          END IF
                    377:       END IF
                    378:       IF (INFO.EQ.0) THEN
                    379:          IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
                    380:             INFO = -18
                    381:          END IF
                    382:       END IF
                    383: *
                    384:       IF( INFO.EQ.0 ) THEN
                    385:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    386:          LWKOPT = MAX( 1, ( NB + 1 )*N )
                    387:          WORK( 1 ) = LWKOPT
                    388: *
                    389:          IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
                    390:             INFO = -20
                    391:          END IF
                    392:       END IF
                    393: *
                    394:       IF( INFO.NE.0 ) THEN
                    395:          CALL XERBLA( 'ZHEGVX', -INFO )
                    396:          RETURN
                    397:       ELSE IF( LQUERY ) THEN
                    398:          RETURN
                    399:       END IF
                    400: *
                    401: *     Quick return if possible
                    402: *
                    403:       M = 0
                    404:       IF( N.EQ.0 ) THEN
                    405:          RETURN
                    406:       END IF
                    407: *
                    408: *     Form a Cholesky factorization of B.
                    409: *
                    410:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
                    411:       IF( INFO.NE.0 ) THEN
                    412:          INFO = N + INFO
                    413:          RETURN
                    414:       END IF
                    415: *
                    416: *     Transform problem to standard eigenvalue problem and solve.
                    417: *
                    418:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    419:       CALL ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
                    420:      $             M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL,
                    421:      $             INFO )
                    422: *
                    423:       IF( WANTZ ) THEN
                    424: *
                    425: *        Backtransform eigenvectors to the original problem.
                    426: *
                    427:          IF( INFO.GT.0 )
                    428:      $      M = INFO - 1
                    429:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    430: *
                    431: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  432: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
1.1       bertrand  433: *
                    434:             IF( UPPER ) THEN
                    435:                TRANS = 'N'
                    436:             ELSE
                    437:                TRANS = 'C'
                    438:             END IF
                    439: *
                    440:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
                    441:      $                  LDB, Z, LDZ )
                    442: *
                    443:          ELSE IF( ITYPE.EQ.3 ) THEN
                    444: *
                    445: *           For B*A*x=(lambda)*x;
1.8       bertrand  446: *           backtransform eigenvectors: x = L*y or U**H *y
1.1       bertrand  447: *
                    448:             IF( UPPER ) THEN
                    449:                TRANS = 'C'
                    450:             ELSE
                    451:                TRANS = 'N'
                    452:             END IF
                    453: *
                    454:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
                    455:      $                  LDB, Z, LDZ )
                    456:          END IF
                    457:       END IF
                    458: *
                    459: *     Set WORK(1) to optimal complex workspace size.
                    460: *
                    461:       WORK( 1 ) = LWKOPT
                    462: *
                    463:       RETURN
                    464: *
                    465: *     End of ZHEGVX
                    466: *
                    467:       END

CVSweb interface <joel.bertrand@systella.fr>