File:  [local] / rpl / lapack / lapack / zhegvd.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:05 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
    2:      $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOBZ, UPLO
   11:       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            IWORK( * )
   15:       DOUBLE PRECISION   RWORK( * ), W( * )
   16:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
   23: *  of a complex generalized Hermitian-definite eigenproblem, of the form
   24: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
   25: *  B are assumed to be Hermitian and B is also positive definite.
   26: *  If eigenvectors are desired, it uses a divide and conquer algorithm.
   27: *
   28: *  The divide and conquer algorithm makes very mild assumptions about
   29: *  floating point arithmetic. It will work on machines with a guard
   30: *  digit in add/subtract, or on those binary machines without guard
   31: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   32: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
   33: *  without guard digits, but we know of none.
   34: *
   35: *  Arguments
   36: *  =========
   37: *
   38: *  ITYPE   (input) INTEGER
   39: *          Specifies the problem type to be solved:
   40: *          = 1:  A*x = (lambda)*B*x
   41: *          = 2:  A*B*x = (lambda)*x
   42: *          = 3:  B*A*x = (lambda)*x
   43: *
   44: *  JOBZ    (input) CHARACTER*1
   45: *          = 'N':  Compute eigenvalues only;
   46: *          = 'V':  Compute eigenvalues and eigenvectors.
   47: *
   48: *  UPLO    (input) CHARACTER*1
   49: *          = 'U':  Upper triangles of A and B are stored;
   50: *          = 'L':  Lower triangles of A and B are stored.
   51: *
   52: *  N       (input) INTEGER
   53: *          The order of the matrices A and B.  N >= 0.
   54: *
   55: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
   56: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
   57: *          leading N-by-N upper triangular part of A contains the
   58: *          upper triangular part of the matrix A.  If UPLO = 'L',
   59: *          the leading N-by-N lower triangular part of A contains
   60: *          the lower triangular part of the matrix A.
   61: *
   62: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
   63: *          matrix Z of eigenvectors.  The eigenvectors are normalized
   64: *          as follows:
   65: *          if ITYPE = 1 or 2, Z**H*B*Z = I;
   66: *          if ITYPE = 3, Z**H*inv(B)*Z = I.
   67: *          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
   68: *          or the lower triangle (if UPLO='L') of A, including the
   69: *          diagonal, is destroyed.
   70: *
   71: *  LDA     (input) INTEGER
   72: *          The leading dimension of the array A.  LDA >= max(1,N).
   73: *
   74: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
   75: *          On entry, the Hermitian matrix B.  If UPLO = 'U', the
   76: *          leading N-by-N upper triangular part of B contains the
   77: *          upper triangular part of the matrix B.  If UPLO = 'L',
   78: *          the leading N-by-N lower triangular part of B contains
   79: *          the lower triangular part of the matrix B.
   80: *
   81: *          On exit, if INFO <= N, the part of B containing the matrix is
   82: *          overwritten by the triangular factor U or L from the Cholesky
   83: *          factorization B = U**H*U or B = L*L**H.
   84: *
   85: *  LDB     (input) INTEGER
   86: *          The leading dimension of the array B.  LDB >= max(1,N).
   87: *
   88: *  W       (output) DOUBLE PRECISION array, dimension (N)
   89: *          If INFO = 0, the eigenvalues in ascending order.
   90: *
   91: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
   92: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   93: *
   94: *  LWORK   (input) INTEGER
   95: *          The length of the array WORK.
   96: *          If N <= 1,                LWORK >= 1.
   97: *          If JOBZ  = 'N' and N > 1, LWORK >= N + 1.
   98: *          If JOBZ  = 'V' and N > 1, LWORK >= 2*N + N**2.
   99: *
  100: *          If LWORK = -1, then a workspace query is assumed; the routine
  101: *          only calculates the optimal sizes of the WORK, RWORK and
  102: *          IWORK arrays, returns these values as the first entries of
  103: *          the WORK, RWORK and IWORK arrays, and no error message
  104: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  105: *
  106: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  107: *          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  108: *
  109: *  LRWORK  (input) INTEGER
  110: *          The dimension of the array RWORK.
  111: *          If N <= 1,                LRWORK >= 1.
  112: *          If JOBZ  = 'N' and N > 1, LRWORK >= N.
  113: *          If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
  114: *
  115: *          If LRWORK = -1, then a workspace query is assumed; the
  116: *          routine only calculates the optimal sizes of the WORK, RWORK
  117: *          and IWORK arrays, returns these values as the first entries
  118: *          of the WORK, RWORK and IWORK arrays, and no error message
  119: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  120: *
  121: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
  122: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  123: *
  124: *  LIWORK  (input) INTEGER
  125: *          The dimension of the array IWORK.
  126: *          If N <= 1,                LIWORK >= 1.
  127: *          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
  128: *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
  129: *
  130: *          If LIWORK = -1, then a workspace query is assumed; the
  131: *          routine only calculates the optimal sizes of the WORK, RWORK
  132: *          and IWORK arrays, returns these values as the first entries
  133: *          of the WORK, RWORK and IWORK arrays, and no error message
  134: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  135: *
  136: *  INFO    (output) INTEGER
  137: *          = 0:  successful exit
  138: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  139: *          > 0:  ZPOTRF or ZHEEVD returned an error code:
  140: *             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
  141: *                    failed to converge; i off-diagonal elements of an
  142: *                    intermediate tridiagonal form did not converge to
  143: *                    zero;
  144: *                    if INFO = i and JOBZ = 'V', then the algorithm
  145: *                    failed to compute an eigenvalue while working on
  146: *                    the submatrix lying in rows and columns INFO/(N+1)
  147: *                    through mod(INFO,N+1);
  148: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
  149: *                    minor of order i of B is not positive definite.
  150: *                    The factorization of B could not be completed and
  151: *                    no eigenvalues or eigenvectors were computed.
  152: *
  153: *  Further Details
  154: *  ===============
  155: *
  156: *  Based on contributions by
  157: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  158: *
  159: *  Modified so that no backsubstitution is performed if ZHEEVD fails to
  160: *  converge (NEIG in old code could be greater than N causing out of
  161: *  bounds reference to A - reported by Ralf Meyer).  Also corrected the
  162: *  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
  163: *  =====================================================================
  164: *
  165: *     .. Parameters ..
  166:       COMPLEX*16         CONE
  167:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  168: *     ..
  169: *     .. Local Scalars ..
  170:       LOGICAL            LQUERY, UPPER, WANTZ
  171:       CHARACTER          TRANS
  172:       INTEGER            LIOPT, LIWMIN, LOPT, LROPT, LRWMIN, LWMIN
  173: *     ..
  174: *     .. External Functions ..
  175:       LOGICAL            LSAME
  176:       EXTERNAL           LSAME
  177: *     ..
  178: *     .. External Subroutines ..
  179:       EXTERNAL           XERBLA, ZHEEVD, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
  180: *     ..
  181: *     .. Intrinsic Functions ..
  182:       INTRINSIC          DBLE, MAX
  183: *     ..
  184: *     .. Executable Statements ..
  185: *
  186: *     Test the input parameters.
  187: *
  188:       WANTZ = LSAME( JOBZ, 'V' )
  189:       UPPER = LSAME( UPLO, 'U' )
  190:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  191: *
  192:       INFO = 0
  193:       IF( N.LE.1 ) THEN
  194:          LWMIN = 1
  195:          LRWMIN = 1
  196:          LIWMIN = 1
  197:       ELSE IF( WANTZ ) THEN
  198:          LWMIN = 2*N + N*N
  199:          LRWMIN = 1 + 5*N + 2*N*N
  200:          LIWMIN = 3 + 5*N
  201:       ELSE
  202:          LWMIN = N + 1
  203:          LRWMIN = N
  204:          LIWMIN = 1
  205:       END IF
  206:       LOPT = LWMIN
  207:       LROPT = LRWMIN
  208:       LIOPT = LIWMIN
  209:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  210:          INFO = -1
  211:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  212:          INFO = -2
  213:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  214:          INFO = -3
  215:       ELSE IF( N.LT.0 ) THEN
  216:          INFO = -4
  217:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  218:          INFO = -6
  219:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  220:          INFO = -8
  221:       END IF
  222: *
  223:       IF( INFO.EQ.0 ) THEN
  224:          WORK( 1 ) = LOPT
  225:          RWORK( 1 ) = LROPT
  226:          IWORK( 1 ) = LIOPT
  227: *
  228:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  229:             INFO = -11
  230:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  231:             INFO = -13
  232:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  233:             INFO = -15
  234:          END IF
  235:       END IF
  236: *
  237:       IF( INFO.NE.0 ) THEN
  238:          CALL XERBLA( 'ZHEGVD', -INFO )
  239:          RETURN
  240:       ELSE IF( LQUERY ) THEN
  241:          RETURN
  242:       END IF
  243: *
  244: *     Quick return if possible
  245: *
  246:       IF( N.EQ.0 )
  247:      $   RETURN
  248: *
  249: *     Form a Cholesky factorization of B.
  250: *
  251:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
  252:       IF( INFO.NE.0 ) THEN
  253:          INFO = N + INFO
  254:          RETURN
  255:       END IF
  256: *
  257: *     Transform problem to standard eigenvalue problem and solve.
  258: *
  259:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  260:       CALL ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK,
  261:      $             IWORK, LIWORK, INFO )
  262:       LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
  263:       LROPT = MAX( DBLE( LROPT ), DBLE( RWORK( 1 ) ) )
  264:       LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
  265: *
  266:       IF( WANTZ .AND. INFO.EQ.0 ) THEN
  267: *
  268: *        Backtransform eigenvectors to the original problem.
  269: *
  270:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  271: *
  272: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  273: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
  274: *
  275:             IF( UPPER ) THEN
  276:                TRANS = 'N'
  277:             ELSE
  278:                TRANS = 'C'
  279:             END IF
  280: *
  281:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
  282:      $                  B, LDB, A, LDA )
  283: *
  284:          ELSE IF( ITYPE.EQ.3 ) THEN
  285: *
  286: *           For B*A*x=(lambda)*x;
  287: *           backtransform eigenvectors: x = L*y or U'*y
  288: *
  289:             IF( UPPER ) THEN
  290:                TRANS = 'C'
  291:             ELSE
  292:                TRANS = 'N'
  293:             END IF
  294: *
  295:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
  296:      $                  B, LDB, A, LDA )
  297:          END IF
  298:       END IF
  299: *
  300:       WORK( 1 ) = LOPT
  301:       RWORK( 1 ) = LROPT
  302:       IWORK( 1 ) = LIOPT
  303: *
  304:       RETURN
  305: *
  306: *     End of ZHEGVD
  307: *
  308:       END

CVSweb interface <joel.bertrand@systella.fr>