Annotation of rpl/lapack/lapack/zhegvd.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZHEGST
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHEGVD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
        !            22: *                          LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBZ, UPLO
        !            26: *       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IWORK( * )
        !            30: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
        !            41: *> of a complex generalized Hermitian-definite eigenproblem, of the form
        !            42: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
        !            43: *> B are assumed to be Hermitian and B is also positive definite.
        !            44: *> If eigenvectors are desired, it uses a divide and conquer algorithm.
        !            45: *>
        !            46: *> The divide and conquer algorithm makes very mild assumptions about
        !            47: *> floating point arithmetic. It will work on machines with a guard
        !            48: *> digit in add/subtract, or on those binary machines without guard
        !            49: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            50: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            51: *> without guard digits, but we know of none.
        !            52: *> \endverbatim
        !            53: *
        !            54: *  Arguments:
        !            55: *  ==========
        !            56: *
        !            57: *> \param[in] ITYPE
        !            58: *> \verbatim
        !            59: *>          ITYPE is INTEGER
        !            60: *>          Specifies the problem type to be solved:
        !            61: *>          = 1:  A*x = (lambda)*B*x
        !            62: *>          = 2:  A*B*x = (lambda)*x
        !            63: *>          = 3:  B*A*x = (lambda)*x
        !            64: *> \endverbatim
        !            65: *>
        !            66: *> \param[in] JOBZ
        !            67: *> \verbatim
        !            68: *>          JOBZ is CHARACTER*1
        !            69: *>          = 'N':  Compute eigenvalues only;
        !            70: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            71: *> \endverbatim
        !            72: *>
        !            73: *> \param[in] UPLO
        !            74: *> \verbatim
        !            75: *>          UPLO is CHARACTER*1
        !            76: *>          = 'U':  Upper triangles of A and B are stored;
        !            77: *>          = 'L':  Lower triangles of A and B are stored.
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in] N
        !            81: *> \verbatim
        !            82: *>          N is INTEGER
        !            83: *>          The order of the matrices A and B.  N >= 0.
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[in,out] A
        !            87: *> \verbatim
        !            88: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !            89: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
        !            90: *>          leading N-by-N upper triangular part of A contains the
        !            91: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !            92: *>          the leading N-by-N lower triangular part of A contains
        !            93: *>          the lower triangular part of the matrix A.
        !            94: *>
        !            95: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            96: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
        !            97: *>          as follows:
        !            98: *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
        !            99: *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
        !           100: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
        !           101: *>          or the lower triangle (if UPLO='L') of A, including the
        !           102: *>          diagonal, is destroyed.
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in] LDA
        !           106: *> \verbatim
        !           107: *>          LDA is INTEGER
        !           108: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in,out] B
        !           112: *> \verbatim
        !           113: *>          B is COMPLEX*16 array, dimension (LDB, N)
        !           114: *>          On entry, the Hermitian matrix B.  If UPLO = 'U', the
        !           115: *>          leading N-by-N upper triangular part of B contains the
        !           116: *>          upper triangular part of the matrix B.  If UPLO = 'L',
        !           117: *>          the leading N-by-N lower triangular part of B contains
        !           118: *>          the lower triangular part of the matrix B.
        !           119: *>
        !           120: *>          On exit, if INFO <= N, the part of B containing the matrix is
        !           121: *>          overwritten by the triangular factor U or L from the Cholesky
        !           122: *>          factorization B = U**H*U or B = L*L**H.
        !           123: *> \endverbatim
        !           124: *>
        !           125: *> \param[in] LDB
        !           126: *> \verbatim
        !           127: *>          LDB is INTEGER
        !           128: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[out] W
        !           132: *> \verbatim
        !           133: *>          W is DOUBLE PRECISION array, dimension (N)
        !           134: *>          If INFO = 0, the eigenvalues in ascending order.
        !           135: *> \endverbatim
        !           136: *>
        !           137: *> \param[out] WORK
        !           138: *> \verbatim
        !           139: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           140: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           141: *> \endverbatim
        !           142: *>
        !           143: *> \param[in] LWORK
        !           144: *> \verbatim
        !           145: *>          LWORK is INTEGER
        !           146: *>          The length of the array WORK.
        !           147: *>          If N <= 1,                LWORK >= 1.
        !           148: *>          If JOBZ  = 'N' and N > 1, LWORK >= N + 1.
        !           149: *>          If JOBZ  = 'V' and N > 1, LWORK >= 2*N + N**2.
        !           150: *>
        !           151: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           152: *>          only calculates the optimal sizes of the WORK, RWORK and
        !           153: *>          IWORK arrays, returns these values as the first entries of
        !           154: *>          the WORK, RWORK and IWORK arrays, and no error message
        !           155: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[out] RWORK
        !           159: *> \verbatim
        !           160: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
        !           161: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
        !           162: *> \endverbatim
        !           163: *>
        !           164: *> \param[in] LRWORK
        !           165: *> \verbatim
        !           166: *>          LRWORK is INTEGER
        !           167: *>          The dimension of the array RWORK.
        !           168: *>          If N <= 1,                LRWORK >= 1.
        !           169: *>          If JOBZ  = 'N' and N > 1, LRWORK >= N.
        !           170: *>          If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
        !           171: *>
        !           172: *>          If LRWORK = -1, then a workspace query is assumed; the
        !           173: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           174: *>          and IWORK arrays, returns these values as the first entries
        !           175: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           176: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           177: *> \endverbatim
        !           178: *>
        !           179: *> \param[out] IWORK
        !           180: *> \verbatim
        !           181: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           182: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           183: *> \endverbatim
        !           184: *>
        !           185: *> \param[in] LIWORK
        !           186: *> \verbatim
        !           187: *>          LIWORK is INTEGER
        !           188: *>          The dimension of the array IWORK.
        !           189: *>          If N <= 1,                LIWORK >= 1.
        !           190: *>          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
        !           191: *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
        !           192: *>
        !           193: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           194: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           195: *>          and IWORK arrays, returns these values as the first entries
        !           196: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           197: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           198: *> \endverbatim
        !           199: *>
        !           200: *> \param[out] INFO
        !           201: *> \verbatim
        !           202: *>          INFO is INTEGER
        !           203: *>          = 0:  successful exit
        !           204: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           205: *>          > 0:  ZPOTRF or ZHEEVD returned an error code:
        !           206: *>             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
        !           207: *>                    failed to converge; i off-diagonal elements of an
        !           208: *>                    intermediate tridiagonal form did not converge to
        !           209: *>                    zero;
        !           210: *>                    if INFO = i and JOBZ = 'V', then the algorithm
        !           211: *>                    failed to compute an eigenvalue while working on
        !           212: *>                    the submatrix lying in rows and columns INFO/(N+1)
        !           213: *>                    through mod(INFO,N+1);
        !           214: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
        !           215: *>                    minor of order i of B is not positive definite.
        !           216: *>                    The factorization of B could not be completed and
        !           217: *>                    no eigenvalues or eigenvectors were computed.
        !           218: *> \endverbatim
        !           219: *
        !           220: *  Authors:
        !           221: *  ========
        !           222: *
        !           223: *> \author Univ. of Tennessee 
        !           224: *> \author Univ. of California Berkeley 
        !           225: *> \author Univ. of Colorado Denver 
        !           226: *> \author NAG Ltd. 
        !           227: *
        !           228: *> \date November 2011
        !           229: *
        !           230: *> \ingroup complex16HEeigen
        !           231: *
        !           232: *> \par Further Details:
        !           233: *  =====================
        !           234: *>
        !           235: *> \verbatim
        !           236: *>
        !           237: *>  Modified so that no backsubstitution is performed if ZHEEVD fails to
        !           238: *>  converge (NEIG in old code could be greater than N causing out of
        !           239: *>  bounds reference to A - reported by Ralf Meyer).  Also corrected the
        !           240: *>  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
        !           241: *> \endverbatim
        !           242: *
        !           243: *> \par Contributors:
        !           244: *  ==================
        !           245: *>
        !           246: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           247: *>
        !           248: *  =====================================================================
1.1       bertrand  249:       SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                    250:      $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
                    251: *
1.9     ! bertrand  252: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  253: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    254: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  255: *     November 2011
1.1       bertrand  256: *
                    257: *     .. Scalar Arguments ..
                    258:       CHARACTER          JOBZ, UPLO
                    259:       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
                    260: *     ..
                    261: *     .. Array Arguments ..
                    262:       INTEGER            IWORK( * )
                    263:       DOUBLE PRECISION   RWORK( * ), W( * )
                    264:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    265: *     ..
                    266: *
                    267: *  =====================================================================
                    268: *
                    269: *     .. Parameters ..
                    270:       COMPLEX*16         CONE
                    271:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    272: *     ..
                    273: *     .. Local Scalars ..
                    274:       LOGICAL            LQUERY, UPPER, WANTZ
                    275:       CHARACTER          TRANS
                    276:       INTEGER            LIOPT, LIWMIN, LOPT, LROPT, LRWMIN, LWMIN
                    277: *     ..
                    278: *     .. External Functions ..
                    279:       LOGICAL            LSAME
                    280:       EXTERNAL           LSAME
                    281: *     ..
                    282: *     .. External Subroutines ..
                    283:       EXTERNAL           XERBLA, ZHEEVD, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
                    284: *     ..
                    285: *     .. Intrinsic Functions ..
                    286:       INTRINSIC          DBLE, MAX
                    287: *     ..
                    288: *     .. Executable Statements ..
                    289: *
                    290: *     Test the input parameters.
                    291: *
                    292:       WANTZ = LSAME( JOBZ, 'V' )
                    293:       UPPER = LSAME( UPLO, 'U' )
                    294:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    295: *
                    296:       INFO = 0
                    297:       IF( N.LE.1 ) THEN
                    298:          LWMIN = 1
                    299:          LRWMIN = 1
                    300:          LIWMIN = 1
                    301:       ELSE IF( WANTZ ) THEN
                    302:          LWMIN = 2*N + N*N
                    303:          LRWMIN = 1 + 5*N + 2*N*N
                    304:          LIWMIN = 3 + 5*N
                    305:       ELSE
                    306:          LWMIN = N + 1
                    307:          LRWMIN = N
                    308:          LIWMIN = 1
                    309:       END IF
                    310:       LOPT = LWMIN
                    311:       LROPT = LRWMIN
                    312:       LIOPT = LIWMIN
                    313:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    314:          INFO = -1
                    315:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    316:          INFO = -2
                    317:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    318:          INFO = -3
                    319:       ELSE IF( N.LT.0 ) THEN
                    320:          INFO = -4
                    321:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    322:          INFO = -6
                    323:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    324:          INFO = -8
                    325:       END IF
                    326: *
                    327:       IF( INFO.EQ.0 ) THEN
                    328:          WORK( 1 ) = LOPT
                    329:          RWORK( 1 ) = LROPT
                    330:          IWORK( 1 ) = LIOPT
                    331: *
                    332:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    333:             INFO = -11
                    334:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    335:             INFO = -13
                    336:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    337:             INFO = -15
                    338:          END IF
                    339:       END IF
                    340: *
                    341:       IF( INFO.NE.0 ) THEN
                    342:          CALL XERBLA( 'ZHEGVD', -INFO )
                    343:          RETURN
                    344:       ELSE IF( LQUERY ) THEN
                    345:          RETURN
                    346:       END IF
                    347: *
                    348: *     Quick return if possible
                    349: *
                    350:       IF( N.EQ.0 )
                    351:      $   RETURN
                    352: *
                    353: *     Form a Cholesky factorization of B.
                    354: *
                    355:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
                    356:       IF( INFO.NE.0 ) THEN
                    357:          INFO = N + INFO
                    358:          RETURN
                    359:       END IF
                    360: *
                    361: *     Transform problem to standard eigenvalue problem and solve.
                    362: *
                    363:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    364:       CALL ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK,
                    365:      $             IWORK, LIWORK, INFO )
                    366:       LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
                    367:       LROPT = MAX( DBLE( LROPT ), DBLE( RWORK( 1 ) ) )
                    368:       LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
                    369: *
                    370:       IF( WANTZ .AND. INFO.EQ.0 ) THEN
                    371: *
                    372: *        Backtransform eigenvectors to the original problem.
                    373: *
                    374:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    375: *
                    376: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  377: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
1.1       bertrand  378: *
                    379:             IF( UPPER ) THEN
                    380:                TRANS = 'N'
                    381:             ELSE
                    382:                TRANS = 'C'
                    383:             END IF
                    384: *
                    385:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
                    386:      $                  B, LDB, A, LDA )
                    387: *
                    388:          ELSE IF( ITYPE.EQ.3 ) THEN
                    389: *
                    390: *           For B*A*x=(lambda)*x;
1.8       bertrand  391: *           backtransform eigenvectors: x = L*y or U**H *y
1.1       bertrand  392: *
                    393:             IF( UPPER ) THEN
                    394:                TRANS = 'C'
                    395:             ELSE
                    396:                TRANS = 'N'
                    397:             END IF
                    398: *
                    399:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
                    400:      $                  B, LDB, A, LDA )
                    401:          END IF
                    402:       END IF
                    403: *
                    404:       WORK( 1 ) = LOPT
                    405:       RWORK( 1 ) = LROPT
                    406:       IWORK( 1 ) = LIOPT
                    407: *
                    408:       RETURN
                    409: *
                    410: *     End of ZHEGVD
                    411: *
                    412:       END

CVSweb interface <joel.bertrand@systella.fr>