Annotation of rpl/lapack/lapack/zhegvd.f, revision 1.19

1.14      bertrand    1: *> \brief \b ZHEGVD
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZHEGVD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvd.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                     22: *                          LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     32: *       ..
1.16      bertrand   33: *
1.9       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
                     41: *> of a complex generalized Hermitian-definite eigenproblem, of the form
                     42: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     43: *> B are assumed to be Hermitian and B is also positive definite.
                     44: *> If eigenvectors are desired, it uses a divide and conquer algorithm.
                     45: *>
                     46: *> The divide and conquer algorithm makes very mild assumptions about
                     47: *> floating point arithmetic. It will work on machines with a guard
                     48: *> digit in add/subtract, or on those binary machines without guard
                     49: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     50: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     51: *> without guard digits, but we know of none.
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] ITYPE
                     58: *> \verbatim
                     59: *>          ITYPE is INTEGER
                     60: *>          Specifies the problem type to be solved:
                     61: *>          = 1:  A*x = (lambda)*B*x
                     62: *>          = 2:  A*B*x = (lambda)*x
                     63: *>          = 3:  B*A*x = (lambda)*x
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] JOBZ
                     67: *> \verbatim
                     68: *>          JOBZ is CHARACTER*1
                     69: *>          = 'N':  Compute eigenvalues only;
                     70: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] UPLO
                     74: *> \verbatim
                     75: *>          UPLO is CHARACTER*1
                     76: *>          = 'U':  Upper triangles of A and B are stored;
                     77: *>          = 'L':  Lower triangles of A and B are stored.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The order of the matrices A and B.  N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in,out] A
                     87: *> \verbatim
                     88: *>          A is COMPLEX*16 array, dimension (LDA, N)
                     89: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     90: *>          leading N-by-N upper triangular part of A contains the
                     91: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     92: *>          the leading N-by-N lower triangular part of A contains
                     93: *>          the lower triangular part of the matrix A.
                     94: *>
                     95: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     96: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
                     97: *>          as follows:
                     98: *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
                     99: *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
                    100: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
                    101: *>          or the lower triangle (if UPLO='L') of A, including the
                    102: *>          diagonal, is destroyed.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] LDA
                    106: *> \verbatim
                    107: *>          LDA is INTEGER
                    108: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in,out] B
                    112: *> \verbatim
                    113: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    114: *>          On entry, the Hermitian matrix B.  If UPLO = 'U', the
                    115: *>          leading N-by-N upper triangular part of B contains the
                    116: *>          upper triangular part of the matrix B.  If UPLO = 'L',
                    117: *>          the leading N-by-N lower triangular part of B contains
                    118: *>          the lower triangular part of the matrix B.
                    119: *>
                    120: *>          On exit, if INFO <= N, the part of B containing the matrix is
                    121: *>          overwritten by the triangular factor U or L from the Cholesky
                    122: *>          factorization B = U**H*U or B = L*L**H.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] LDB
                    126: *> \verbatim
                    127: *>          LDB is INTEGER
                    128: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] W
                    132: *> \verbatim
                    133: *>          W is DOUBLE PRECISION array, dimension (N)
                    134: *>          If INFO = 0, the eigenvalues in ascending order.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[out] WORK
                    138: *> \verbatim
                    139: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    140: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in] LWORK
                    144: *> \verbatim
                    145: *>          LWORK is INTEGER
                    146: *>          The length of the array WORK.
                    147: *>          If N <= 1,                LWORK >= 1.
                    148: *>          If JOBZ  = 'N' and N > 1, LWORK >= N + 1.
                    149: *>          If JOBZ  = 'V' and N > 1, LWORK >= 2*N + N**2.
                    150: *>
                    151: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    152: *>          only calculates the optimal sizes of the WORK, RWORK and
                    153: *>          IWORK arrays, returns these values as the first entries of
                    154: *>          the WORK, RWORK and IWORK arrays, and no error message
                    155: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[out] RWORK
                    159: *> \verbatim
                    160: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
                    161: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[in] LRWORK
                    165: *> \verbatim
                    166: *>          LRWORK is INTEGER
                    167: *>          The dimension of the array RWORK.
                    168: *>          If N <= 1,                LRWORK >= 1.
                    169: *>          If JOBZ  = 'N' and N > 1, LRWORK >= N.
                    170: *>          If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
                    171: *>
                    172: *>          If LRWORK = -1, then a workspace query is assumed; the
                    173: *>          routine only calculates the optimal sizes of the WORK, RWORK
                    174: *>          and IWORK arrays, returns these values as the first entries
                    175: *>          of the WORK, RWORK and IWORK arrays, and no error message
                    176: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[out] IWORK
                    180: *> \verbatim
                    181: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    182: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[in] LIWORK
                    186: *> \verbatim
                    187: *>          LIWORK is INTEGER
                    188: *>          The dimension of the array IWORK.
                    189: *>          If N <= 1,                LIWORK >= 1.
                    190: *>          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
                    191: *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
                    192: *>
                    193: *>          If LIWORK = -1, then a workspace query is assumed; the
                    194: *>          routine only calculates the optimal sizes of the WORK, RWORK
                    195: *>          and IWORK arrays, returns these values as the first entries
                    196: *>          of the WORK, RWORK and IWORK arrays, and no error message
                    197: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[out] INFO
                    201: *> \verbatim
                    202: *>          INFO is INTEGER
                    203: *>          = 0:  successful exit
                    204: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    205: *>          > 0:  ZPOTRF or ZHEEVD returned an error code:
                    206: *>             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
                    207: *>                    failed to converge; i off-diagonal elements of an
                    208: *>                    intermediate tridiagonal form did not converge to
                    209: *>                    zero;
                    210: *>                    if INFO = i and JOBZ = 'V', then the algorithm
                    211: *>                    failed to compute an eigenvalue while working on
                    212: *>                    the submatrix lying in rows and columns INFO/(N+1)
                    213: *>                    through mod(INFO,N+1);
                    214: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    215: *>                    minor of order i of B is not positive definite.
                    216: *>                    The factorization of B could not be completed and
                    217: *>                    no eigenvalues or eigenvectors were computed.
                    218: *> \endverbatim
                    219: *
                    220: *  Authors:
                    221: *  ========
                    222: *
1.16      bertrand  223: *> \author Univ. of Tennessee
                    224: *> \author Univ. of California Berkeley
                    225: *> \author Univ. of Colorado Denver
                    226: *> \author NAG Ltd.
1.9       bertrand  227: *
                    228: *> \ingroup complex16HEeigen
                    229: *
                    230: *> \par Further Details:
                    231: *  =====================
                    232: *>
                    233: *> \verbatim
                    234: *>
                    235: *>  Modified so that no backsubstitution is performed if ZHEEVD fails to
                    236: *>  converge (NEIG in old code could be greater than N causing out of
                    237: *>  bounds reference to A - reported by Ralf Meyer).  Also corrected the
                    238: *>  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
                    239: *> \endverbatim
                    240: *
                    241: *> \par Contributors:
                    242: *  ==================
                    243: *>
                    244: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    245: *>
                    246: *  =====================================================================
1.1       bertrand  247:       SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                    248:      $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
                    249: *
1.19    ! bertrand  250: *  -- LAPACK driver routine --
1.1       bertrand  251: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    252: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    253: *
                    254: *     .. Scalar Arguments ..
                    255:       CHARACTER          JOBZ, UPLO
                    256:       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
                    257: *     ..
                    258: *     .. Array Arguments ..
                    259:       INTEGER            IWORK( * )
                    260:       DOUBLE PRECISION   RWORK( * ), W( * )
                    261:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    262: *     ..
                    263: *
                    264: *  =====================================================================
                    265: *
                    266: *     .. Parameters ..
                    267:       COMPLEX*16         CONE
                    268:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    269: *     ..
                    270: *     .. Local Scalars ..
                    271:       LOGICAL            LQUERY, UPPER, WANTZ
                    272:       CHARACTER          TRANS
                    273:       INTEGER            LIOPT, LIWMIN, LOPT, LROPT, LRWMIN, LWMIN
                    274: *     ..
                    275: *     .. External Functions ..
                    276:       LOGICAL            LSAME
                    277:       EXTERNAL           LSAME
                    278: *     ..
                    279: *     .. External Subroutines ..
                    280:       EXTERNAL           XERBLA, ZHEEVD, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
                    281: *     ..
                    282: *     .. Intrinsic Functions ..
                    283:       INTRINSIC          DBLE, MAX
                    284: *     ..
                    285: *     .. Executable Statements ..
                    286: *
                    287: *     Test the input parameters.
                    288: *
                    289:       WANTZ = LSAME( JOBZ, 'V' )
                    290:       UPPER = LSAME( UPLO, 'U' )
                    291:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    292: *
                    293:       INFO = 0
                    294:       IF( N.LE.1 ) THEN
                    295:          LWMIN = 1
                    296:          LRWMIN = 1
                    297:          LIWMIN = 1
                    298:       ELSE IF( WANTZ ) THEN
                    299:          LWMIN = 2*N + N*N
                    300:          LRWMIN = 1 + 5*N + 2*N*N
                    301:          LIWMIN = 3 + 5*N
                    302:       ELSE
                    303:          LWMIN = N + 1
                    304:          LRWMIN = N
                    305:          LIWMIN = 1
                    306:       END IF
                    307:       LOPT = LWMIN
                    308:       LROPT = LRWMIN
                    309:       LIOPT = LIWMIN
                    310:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    311:          INFO = -1
                    312:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    313:          INFO = -2
                    314:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    315:          INFO = -3
                    316:       ELSE IF( N.LT.0 ) THEN
                    317:          INFO = -4
                    318:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    319:          INFO = -6
                    320:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    321:          INFO = -8
                    322:       END IF
                    323: *
                    324:       IF( INFO.EQ.0 ) THEN
                    325:          WORK( 1 ) = LOPT
                    326:          RWORK( 1 ) = LROPT
                    327:          IWORK( 1 ) = LIOPT
                    328: *
                    329:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    330:             INFO = -11
                    331:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    332:             INFO = -13
                    333:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    334:             INFO = -15
                    335:          END IF
                    336:       END IF
                    337: *
                    338:       IF( INFO.NE.0 ) THEN
                    339:          CALL XERBLA( 'ZHEGVD', -INFO )
                    340:          RETURN
                    341:       ELSE IF( LQUERY ) THEN
                    342:          RETURN
                    343:       END IF
                    344: *
                    345: *     Quick return if possible
                    346: *
                    347:       IF( N.EQ.0 )
                    348:      $   RETURN
                    349: *
                    350: *     Form a Cholesky factorization of B.
                    351: *
                    352:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
                    353:       IF( INFO.NE.0 ) THEN
                    354:          INFO = N + INFO
                    355:          RETURN
                    356:       END IF
                    357: *
                    358: *     Transform problem to standard eigenvalue problem and solve.
                    359: *
                    360:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    361:       CALL ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK,
                    362:      $             IWORK, LIWORK, INFO )
1.19    ! bertrand  363:       LOPT = INT( MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) ) )
        !           364:       LROPT = INT( MAX( DBLE( LROPT ), DBLE( RWORK( 1 ) ) ) )
        !           365:       LIOPT = INT( MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) ) )
1.1       bertrand  366: *
                    367:       IF( WANTZ .AND. INFO.EQ.0 ) THEN
                    368: *
                    369: *        Backtransform eigenvectors to the original problem.
                    370: *
                    371:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    372: *
                    373: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  374: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
1.1       bertrand  375: *
                    376:             IF( UPPER ) THEN
                    377:                TRANS = 'N'
                    378:             ELSE
                    379:                TRANS = 'C'
                    380:             END IF
                    381: *
                    382:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
                    383:      $                  B, LDB, A, LDA )
                    384: *
                    385:          ELSE IF( ITYPE.EQ.3 ) THEN
                    386: *
                    387: *           For B*A*x=(lambda)*x;
1.8       bertrand  388: *           backtransform eigenvectors: x = L*y or U**H *y
1.1       bertrand  389: *
                    390:             IF( UPPER ) THEN
                    391:                TRANS = 'C'
                    392:             ELSE
                    393:                TRANS = 'N'
                    394:             END IF
                    395: *
                    396:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
                    397:      $                  B, LDB, A, LDA )
                    398:          END IF
                    399:       END IF
                    400: *
                    401:       WORK( 1 ) = LOPT
                    402:       RWORK( 1 ) = LROPT
                    403:       IWORK( 1 ) = LIOPT
                    404: *
                    405:       RETURN
                    406: *
                    407: *     End of ZHEGVD
                    408: *
                    409:       END

CVSweb interface <joel.bertrand@systella.fr>