Annotation of rpl/lapack/lapack/zhegv.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                      2:      $                  LWORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ, UPLO
                     11:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   RWORK( * ), W( * )
                     15:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  ZHEGV computes all the eigenvalues, and optionally, the eigenvectors
                     22: *  of a complex generalized Hermitian-definite eigenproblem, of the form
                     23: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
                     24: *  Here A and B are assumed to be Hermitian and B is also
                     25: *  positive definite.
                     26: *
                     27: *  Arguments
                     28: *  =========
                     29: *
                     30: *  ITYPE   (input) INTEGER
                     31: *          Specifies the problem type to be solved:
                     32: *          = 1:  A*x = (lambda)*B*x
                     33: *          = 2:  A*B*x = (lambda)*x
                     34: *          = 3:  B*A*x = (lambda)*x
                     35: *
                     36: *  JOBZ    (input) CHARACTER*1
                     37: *          = 'N':  Compute eigenvalues only;
                     38: *          = 'V':  Compute eigenvalues and eigenvectors.
                     39: *
                     40: *  UPLO    (input) CHARACTER*1
                     41: *          = 'U':  Upper triangles of A and B are stored;
                     42: *          = 'L':  Lower triangles of A and B are stored.
                     43: *
                     44: *  N       (input) INTEGER
                     45: *          The order of the matrices A and B.  N >= 0.
                     46: *
                     47: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     48: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     49: *          leading N-by-N upper triangular part of A contains the
                     50: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     51: *          the leading N-by-N lower triangular part of A contains
                     52: *          the lower triangular part of the matrix A.
                     53: *
                     54: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     55: *          matrix Z of eigenvectors.  The eigenvectors are normalized
                     56: *          as follows:
                     57: *          if ITYPE = 1 or 2, Z**H*B*Z = I;
                     58: *          if ITYPE = 3, Z**H*inv(B)*Z = I.
                     59: *          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
                     60: *          or the lower triangle (if UPLO='L') of A, including the
                     61: *          diagonal, is destroyed.
                     62: *
                     63: *  LDA     (input) INTEGER
                     64: *          The leading dimension of the array A.  LDA >= max(1,N).
                     65: *
                     66: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
                     67: *          On entry, the Hermitian positive definite matrix B.
                     68: *          If UPLO = 'U', the leading N-by-N upper triangular part of B
                     69: *          contains the upper triangular part of the matrix B.
                     70: *          If UPLO = 'L', the leading N-by-N lower triangular part of B
                     71: *          contains the lower triangular part of the matrix B.
                     72: *
                     73: *          On exit, if INFO <= N, the part of B containing the matrix is
                     74: *          overwritten by the triangular factor U or L from the Cholesky
                     75: *          factorization B = U**H*U or B = L*L**H.
                     76: *
                     77: *  LDB     (input) INTEGER
                     78: *          The leading dimension of the array B.  LDB >= max(1,N).
                     79: *
                     80: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     81: *          If INFO = 0, the eigenvalues in ascending order.
                     82: *
                     83: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     84: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     85: *
                     86: *  LWORK   (input) INTEGER
                     87: *          The length of the array WORK.  LWORK >= max(1,2*N-1).
                     88: *          For optimal efficiency, LWORK >= (NB+1)*N,
                     89: *          where NB is the blocksize for ZHETRD returned by ILAENV.
                     90: *
                     91: *          If LWORK = -1, then a workspace query is assumed; the routine
                     92: *          only calculates the optimal size of the WORK array, returns
                     93: *          this value as the first entry of the WORK array, and no error
                     94: *          message related to LWORK is issued by XERBLA.
                     95: *
                     96: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
                     97: *
                     98: *  INFO    (output) INTEGER
                     99: *          = 0:  successful exit
                    100: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    101: *          > 0:  ZPOTRF or ZHEEV returned an error code:
                    102: *             <= N:  if INFO = i, ZHEEV failed to converge;
                    103: *                    i off-diagonal elements of an intermediate
                    104: *                    tridiagonal form did not converge to zero;
                    105: *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    106: *                    minor of order i of B is not positive definite.
                    107: *                    The factorization of B could not be completed and
                    108: *                    no eigenvalues or eigenvectors were computed.
                    109: *
                    110: *  =====================================================================
                    111: *
                    112: *     .. Parameters ..
                    113:       COMPLEX*16         ONE
                    114:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    115: *     ..
                    116: *     .. Local Scalars ..
                    117:       LOGICAL            LQUERY, UPPER, WANTZ
                    118:       CHARACTER          TRANS
                    119:       INTEGER            LWKOPT, NB, NEIG
                    120: *     ..
                    121: *     .. External Functions ..
                    122:       LOGICAL            LSAME
                    123:       INTEGER            ILAENV
                    124:       EXTERNAL           LSAME, ILAENV
                    125: *     ..
                    126: *     .. External Subroutines ..
                    127:       EXTERNAL           XERBLA, ZHEEV, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
                    128: *     ..
                    129: *     .. Intrinsic Functions ..
                    130:       INTRINSIC          MAX
                    131: *     ..
                    132: *     .. Executable Statements ..
                    133: *
                    134: *     Test the input parameters.
                    135: *
                    136:       WANTZ = LSAME( JOBZ, 'V' )
                    137:       UPPER = LSAME( UPLO, 'U' )
                    138:       LQUERY = ( LWORK.EQ.-1 )
                    139: *
                    140:       INFO = 0
                    141:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    142:          INFO = -1
                    143:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    144:          INFO = -2
                    145:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    146:          INFO = -3
                    147:       ELSE IF( N.LT.0 ) THEN
                    148:          INFO = -4
                    149:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    150:          INFO = -6
                    151:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    152:          INFO = -8
                    153:       END IF
                    154: *
                    155:       IF( INFO.EQ.0 ) THEN
                    156:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    157:          LWKOPT = MAX( 1, ( NB + 1 )*N )
                    158:          WORK( 1 ) = LWKOPT
                    159: *
                    160:          IF( LWORK.LT.MAX( 1, 2*N - 1 ) .AND. .NOT.LQUERY ) THEN
                    161:             INFO = -11
                    162:          END IF
                    163:       END IF
                    164: *
                    165:       IF( INFO.NE.0 ) THEN
                    166:          CALL XERBLA( 'ZHEGV ', -INFO )
                    167:          RETURN
                    168:       ELSE IF( LQUERY ) THEN
                    169:          RETURN
                    170:       END IF
                    171: *
                    172: *     Quick return if possible
                    173: *
                    174:       IF( N.EQ.0 )
                    175:      $   RETURN
                    176: *
                    177: *     Form a Cholesky factorization of B.
                    178: *
                    179:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
                    180:       IF( INFO.NE.0 ) THEN
                    181:          INFO = N + INFO
                    182:          RETURN
                    183:       END IF
                    184: *
                    185: *     Transform problem to standard eigenvalue problem and solve.
                    186: *
                    187:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    188:       CALL ZHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
                    189: *
                    190:       IF( WANTZ ) THEN
                    191: *
                    192: *        Backtransform eigenvectors to the original problem.
                    193: *
                    194:          NEIG = N
                    195:          IF( INFO.GT.0 )
                    196:      $      NEIG = INFO - 1
                    197:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    198: *
                    199: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
                    200: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
                    201: *
                    202:             IF( UPPER ) THEN
                    203:                TRANS = 'N'
                    204:             ELSE
                    205:                TRANS = 'C'
                    206:             END IF
                    207: *
                    208:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    209:      $                  B, LDB, A, LDA )
                    210: *
                    211:          ELSE IF( ITYPE.EQ.3 ) THEN
                    212: *
                    213: *           For B*A*x=(lambda)*x;
                    214: *           backtransform eigenvectors: x = L*y or U'*y
                    215: *
                    216:             IF( UPPER ) THEN
                    217:                TRANS = 'C'
                    218:             ELSE
                    219:                TRANS = 'N'
                    220:             END IF
                    221: *
                    222:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    223:      $                  B, LDB, A, LDA )
                    224:          END IF
                    225:       END IF
                    226: *
                    227:       WORK( 1 ) = LWKOPT
                    228: *
                    229:       RETURN
                    230: *
                    231: *     End of ZHEGV
                    232: *
                    233:       END

CVSweb interface <joel.bertrand@systella.fr>