Annotation of rpl/lapack/lapack/zhegv.f, revision 1.19

1.14      bertrand    1: *> \brief \b ZHEGV
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZHEGV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegv.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                     22: *                         LWORK, RWORK, INFO )
1.16      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     31: *       ..
1.16      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZHEGV computes all the eigenvalues, and optionally, the eigenvectors
                     40: *> of a complex generalized Hermitian-definite eigenproblem, of the form
                     41: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
                     42: *> Here A and B are assumed to be Hermitian and B is also
                     43: *> positive definite.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] ITYPE
                     50: *> \verbatim
                     51: *>          ITYPE is INTEGER
                     52: *>          Specifies the problem type to be solved:
                     53: *>          = 1:  A*x = (lambda)*B*x
                     54: *>          = 2:  A*B*x = (lambda)*x
                     55: *>          = 3:  B*A*x = (lambda)*x
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] JOBZ
                     59: *> \verbatim
                     60: *>          JOBZ is CHARACTER*1
                     61: *>          = 'N':  Compute eigenvalues only;
                     62: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] UPLO
                     66: *> \verbatim
                     67: *>          UPLO is CHARACTER*1
                     68: *>          = 'U':  Upper triangles of A and B are stored;
                     69: *>          = 'L':  Lower triangles of A and B are stored.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] N
                     73: *> \verbatim
                     74: *>          N is INTEGER
                     75: *>          The order of the matrices A and B.  N >= 0.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] A
                     79: *> \verbatim
                     80: *>          A is COMPLEX*16 array, dimension (LDA, N)
                     81: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     82: *>          leading N-by-N upper triangular part of A contains the
                     83: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     84: *>          the leading N-by-N lower triangular part of A contains
                     85: *>          the lower triangular part of the matrix A.
                     86: *>
                     87: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     88: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
                     89: *>          as follows:
                     90: *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
                     91: *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
                     92: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
                     93: *>          or the lower triangle (if UPLO='L') of A, including the
                     94: *>          diagonal, is destroyed.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] LDA
                     98: *> \verbatim
                     99: *>          LDA is INTEGER
                    100: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in,out] B
                    104: *> \verbatim
                    105: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    106: *>          On entry, the Hermitian positive definite matrix B.
                    107: *>          If UPLO = 'U', the leading N-by-N upper triangular part of B
                    108: *>          contains the upper triangular part of the matrix B.
                    109: *>          If UPLO = 'L', the leading N-by-N lower triangular part of B
                    110: *>          contains the lower triangular part of the matrix B.
                    111: *>
                    112: *>          On exit, if INFO <= N, the part of B containing the matrix is
                    113: *>          overwritten by the triangular factor U or L from the Cholesky
                    114: *>          factorization B = U**H*U or B = L*L**H.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDB
                    118: *> \verbatim
                    119: *>          LDB is INTEGER
                    120: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[out] W
                    124: *> \verbatim
                    125: *>          W is DOUBLE PRECISION array, dimension (N)
                    126: *>          If INFO = 0, the eigenvalues in ascending order.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[out] WORK
                    130: *> \verbatim
                    131: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    132: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in] LWORK
                    136: *> \verbatim
                    137: *>          LWORK is INTEGER
                    138: *>          The length of the array WORK.  LWORK >= max(1,2*N-1).
                    139: *>          For optimal efficiency, LWORK >= (NB+1)*N,
                    140: *>          where NB is the blocksize for ZHETRD returned by ILAENV.
                    141: *>
                    142: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    143: *>          only calculates the optimal size of the WORK array, returns
                    144: *>          this value as the first entry of the WORK array, and no error
                    145: *>          message related to LWORK is issued by XERBLA.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] RWORK
                    149: *> \verbatim
                    150: *>          RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] INFO
                    154: *> \verbatim
                    155: *>          INFO is INTEGER
                    156: *>          = 0:  successful exit
                    157: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    158: *>          > 0:  ZPOTRF or ZHEEV returned an error code:
                    159: *>             <= N:  if INFO = i, ZHEEV failed to converge;
                    160: *>                    i off-diagonal elements of an intermediate
                    161: *>                    tridiagonal form did not converge to zero;
                    162: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    163: *>                    minor of order i of B is not positive definite.
                    164: *>                    The factorization of B could not be completed and
                    165: *>                    no eigenvalues or eigenvectors were computed.
                    166: *> \endverbatim
                    167: *
                    168: *  Authors:
                    169: *  ========
                    170: *
1.16      bertrand  171: *> \author Univ. of Tennessee
                    172: *> \author Univ. of California Berkeley
                    173: *> \author Univ. of Colorado Denver
                    174: *> \author NAG Ltd.
1.9       bertrand  175: *
                    176: *> \ingroup complex16HEeigen
                    177: *
                    178: *  =====================================================================
1.1       bertrand  179:       SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                    180:      $                  LWORK, RWORK, INFO )
                    181: *
1.19    ! bertrand  182: *  -- LAPACK driver routine --
1.1       bertrand  183: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    184: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    185: *
                    186: *     .. Scalar Arguments ..
                    187:       CHARACTER          JOBZ, UPLO
                    188:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
                    189: *     ..
                    190: *     .. Array Arguments ..
                    191:       DOUBLE PRECISION   RWORK( * ), W( * )
                    192:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    193: *     ..
                    194: *
                    195: *  =====================================================================
                    196: *
                    197: *     .. Parameters ..
                    198:       COMPLEX*16         ONE
                    199:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    200: *     ..
                    201: *     .. Local Scalars ..
                    202:       LOGICAL            LQUERY, UPPER, WANTZ
                    203:       CHARACTER          TRANS
                    204:       INTEGER            LWKOPT, NB, NEIG
                    205: *     ..
                    206: *     .. External Functions ..
                    207:       LOGICAL            LSAME
                    208:       INTEGER            ILAENV
                    209:       EXTERNAL           LSAME, ILAENV
                    210: *     ..
                    211: *     .. External Subroutines ..
                    212:       EXTERNAL           XERBLA, ZHEEV, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
                    213: *     ..
                    214: *     .. Intrinsic Functions ..
                    215:       INTRINSIC          MAX
                    216: *     ..
                    217: *     .. Executable Statements ..
                    218: *
                    219: *     Test the input parameters.
                    220: *
                    221:       WANTZ = LSAME( JOBZ, 'V' )
                    222:       UPPER = LSAME( UPLO, 'U' )
                    223:       LQUERY = ( LWORK.EQ.-1 )
                    224: *
                    225:       INFO = 0
                    226:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    227:          INFO = -1
                    228:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    229:          INFO = -2
                    230:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    231:          INFO = -3
                    232:       ELSE IF( N.LT.0 ) THEN
                    233:          INFO = -4
                    234:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    235:          INFO = -6
                    236:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    237:          INFO = -8
                    238:       END IF
                    239: *
                    240:       IF( INFO.EQ.0 ) THEN
                    241:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    242:          LWKOPT = MAX( 1, ( NB + 1 )*N )
                    243:          WORK( 1 ) = LWKOPT
                    244: *
                    245:          IF( LWORK.LT.MAX( 1, 2*N - 1 ) .AND. .NOT.LQUERY ) THEN
                    246:             INFO = -11
                    247:          END IF
                    248:       END IF
                    249: *
                    250:       IF( INFO.NE.0 ) THEN
                    251:          CALL XERBLA( 'ZHEGV ', -INFO )
                    252:          RETURN
                    253:       ELSE IF( LQUERY ) THEN
                    254:          RETURN
                    255:       END IF
                    256: *
                    257: *     Quick return if possible
                    258: *
                    259:       IF( N.EQ.0 )
                    260:      $   RETURN
                    261: *
                    262: *     Form a Cholesky factorization of B.
                    263: *
                    264:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
                    265:       IF( INFO.NE.0 ) THEN
                    266:          INFO = N + INFO
                    267:          RETURN
                    268:       END IF
                    269: *
                    270: *     Transform problem to standard eigenvalue problem and solve.
                    271: *
                    272:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    273:       CALL ZHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
                    274: *
                    275:       IF( WANTZ ) THEN
                    276: *
                    277: *        Backtransform eigenvectors to the original problem.
                    278: *
                    279:          NEIG = N
                    280:          IF( INFO.GT.0 )
                    281:      $      NEIG = INFO - 1
                    282:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    283: *
                    284: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  285: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
1.1       bertrand  286: *
                    287:             IF( UPPER ) THEN
                    288:                TRANS = 'N'
                    289:             ELSE
                    290:                TRANS = 'C'
                    291:             END IF
                    292: *
                    293:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    294:      $                  B, LDB, A, LDA )
                    295: *
                    296:          ELSE IF( ITYPE.EQ.3 ) THEN
                    297: *
                    298: *           For B*A*x=(lambda)*x;
1.8       bertrand  299: *           backtransform eigenvectors: x = L*y or U**H *y
1.1       bertrand  300: *
                    301:             IF( UPPER ) THEN
                    302:                TRANS = 'C'
                    303:             ELSE
                    304:                TRANS = 'N'
                    305:             END IF
                    306: *
                    307:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    308:      $                  B, LDB, A, LDA )
                    309:          END IF
                    310:       END IF
                    311: *
                    312:       WORK( 1 ) = LWKOPT
                    313: *
                    314:       RETURN
                    315: *
                    316: *     End of ZHEGV
                    317: *
                    318:       END

CVSweb interface <joel.bertrand@systella.fr>