Annotation of rpl/lapack/lapack/zhegv.f, revision 1.14

1.14    ! bertrand    1: *> \brief \b ZHEGV
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHEGV + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegv.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegv.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegv.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                     22: *                         LWORK, RWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBZ, UPLO
                     26: *       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZHEGV computes all the eigenvalues, and optionally, the eigenvectors
                     40: *> of a complex generalized Hermitian-definite eigenproblem, of the form
                     41: *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
                     42: *> Here A and B are assumed to be Hermitian and B is also
                     43: *> positive definite.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] ITYPE
                     50: *> \verbatim
                     51: *>          ITYPE is INTEGER
                     52: *>          Specifies the problem type to be solved:
                     53: *>          = 1:  A*x = (lambda)*B*x
                     54: *>          = 2:  A*B*x = (lambda)*x
                     55: *>          = 3:  B*A*x = (lambda)*x
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] JOBZ
                     59: *> \verbatim
                     60: *>          JOBZ is CHARACTER*1
                     61: *>          = 'N':  Compute eigenvalues only;
                     62: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] UPLO
                     66: *> \verbatim
                     67: *>          UPLO is CHARACTER*1
                     68: *>          = 'U':  Upper triangles of A and B are stored;
                     69: *>          = 'L':  Lower triangles of A and B are stored.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] N
                     73: *> \verbatim
                     74: *>          N is INTEGER
                     75: *>          The order of the matrices A and B.  N >= 0.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in,out] A
                     79: *> \verbatim
                     80: *>          A is COMPLEX*16 array, dimension (LDA, N)
                     81: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     82: *>          leading N-by-N upper triangular part of A contains the
                     83: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     84: *>          the leading N-by-N lower triangular part of A contains
                     85: *>          the lower triangular part of the matrix A.
                     86: *>
                     87: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     88: *>          matrix Z of eigenvectors.  The eigenvectors are normalized
                     89: *>          as follows:
                     90: *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
                     91: *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
                     92: *>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
                     93: *>          or the lower triangle (if UPLO='L') of A, including the
                     94: *>          diagonal, is destroyed.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] LDA
                     98: *> \verbatim
                     99: *>          LDA is INTEGER
                    100: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in,out] B
                    104: *> \verbatim
                    105: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    106: *>          On entry, the Hermitian positive definite matrix B.
                    107: *>          If UPLO = 'U', the leading N-by-N upper triangular part of B
                    108: *>          contains the upper triangular part of the matrix B.
                    109: *>          If UPLO = 'L', the leading N-by-N lower triangular part of B
                    110: *>          contains the lower triangular part of the matrix B.
                    111: *>
                    112: *>          On exit, if INFO <= N, the part of B containing the matrix is
                    113: *>          overwritten by the triangular factor U or L from the Cholesky
                    114: *>          factorization B = U**H*U or B = L*L**H.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDB
                    118: *> \verbatim
                    119: *>          LDB is INTEGER
                    120: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[out] W
                    124: *> \verbatim
                    125: *>          W is DOUBLE PRECISION array, dimension (N)
                    126: *>          If INFO = 0, the eigenvalues in ascending order.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[out] WORK
                    130: *> \verbatim
                    131: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    132: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in] LWORK
                    136: *> \verbatim
                    137: *>          LWORK is INTEGER
                    138: *>          The length of the array WORK.  LWORK >= max(1,2*N-1).
                    139: *>          For optimal efficiency, LWORK >= (NB+1)*N,
                    140: *>          where NB is the blocksize for ZHETRD returned by ILAENV.
                    141: *>
                    142: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    143: *>          only calculates the optimal size of the WORK array, returns
                    144: *>          this value as the first entry of the WORK array, and no error
                    145: *>          message related to LWORK is issued by XERBLA.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] RWORK
                    149: *> \verbatim
                    150: *>          RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] INFO
                    154: *> \verbatim
                    155: *>          INFO is INTEGER
                    156: *>          = 0:  successful exit
                    157: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    158: *>          > 0:  ZPOTRF or ZHEEV returned an error code:
                    159: *>             <= N:  if INFO = i, ZHEEV failed to converge;
                    160: *>                    i off-diagonal elements of an intermediate
                    161: *>                    tridiagonal form did not converge to zero;
                    162: *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    163: *>                    minor of order i of B is not positive definite.
                    164: *>                    The factorization of B could not be completed and
                    165: *>                    no eigenvalues or eigenvectors were computed.
                    166: *> \endverbatim
                    167: *
                    168: *  Authors:
                    169: *  ========
                    170: *
                    171: *> \author Univ. of Tennessee 
                    172: *> \author Univ. of California Berkeley 
                    173: *> \author Univ. of Colorado Denver 
                    174: *> \author NAG Ltd. 
                    175: *
1.14    ! bertrand  176: *> \date November 2015
1.9       bertrand  177: *
                    178: *> \ingroup complex16HEeigen
                    179: *
                    180: *  =====================================================================
1.1       bertrand  181:       SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
                    182:      $                  LWORK, RWORK, INFO )
                    183: *
1.14    ! bertrand  184: *  -- LAPACK driver routine (version 3.6.0) --
1.1       bertrand  185: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    186: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14    ! bertrand  187: *     November 2015
1.1       bertrand  188: *
                    189: *     .. Scalar Arguments ..
                    190:       CHARACTER          JOBZ, UPLO
                    191:       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
                    192: *     ..
                    193: *     .. Array Arguments ..
                    194:       DOUBLE PRECISION   RWORK( * ), W( * )
                    195:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    196: *     ..
                    197: *
                    198: *  =====================================================================
                    199: *
                    200: *     .. Parameters ..
                    201:       COMPLEX*16         ONE
                    202:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    203: *     ..
                    204: *     .. Local Scalars ..
                    205:       LOGICAL            LQUERY, UPPER, WANTZ
                    206:       CHARACTER          TRANS
                    207:       INTEGER            LWKOPT, NB, NEIG
                    208: *     ..
                    209: *     .. External Functions ..
                    210:       LOGICAL            LSAME
                    211:       INTEGER            ILAENV
                    212:       EXTERNAL           LSAME, ILAENV
                    213: *     ..
                    214: *     .. External Subroutines ..
                    215:       EXTERNAL           XERBLA, ZHEEV, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
                    216: *     ..
                    217: *     .. Intrinsic Functions ..
                    218:       INTRINSIC          MAX
                    219: *     ..
                    220: *     .. Executable Statements ..
                    221: *
                    222: *     Test the input parameters.
                    223: *
                    224:       WANTZ = LSAME( JOBZ, 'V' )
                    225:       UPPER = LSAME( UPLO, 'U' )
                    226:       LQUERY = ( LWORK.EQ.-1 )
                    227: *
                    228:       INFO = 0
                    229:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    230:          INFO = -1
                    231:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    232:          INFO = -2
                    233:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    234:          INFO = -3
                    235:       ELSE IF( N.LT.0 ) THEN
                    236:          INFO = -4
                    237:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    238:          INFO = -6
                    239:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    240:          INFO = -8
                    241:       END IF
                    242: *
                    243:       IF( INFO.EQ.0 ) THEN
                    244:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    245:          LWKOPT = MAX( 1, ( NB + 1 )*N )
                    246:          WORK( 1 ) = LWKOPT
                    247: *
                    248:          IF( LWORK.LT.MAX( 1, 2*N - 1 ) .AND. .NOT.LQUERY ) THEN
                    249:             INFO = -11
                    250:          END IF
                    251:       END IF
                    252: *
                    253:       IF( INFO.NE.0 ) THEN
                    254:          CALL XERBLA( 'ZHEGV ', -INFO )
                    255:          RETURN
                    256:       ELSE IF( LQUERY ) THEN
                    257:          RETURN
                    258:       END IF
                    259: *
                    260: *     Quick return if possible
                    261: *
                    262:       IF( N.EQ.0 )
                    263:      $   RETURN
                    264: *
                    265: *     Form a Cholesky factorization of B.
                    266: *
                    267:       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
                    268:       IF( INFO.NE.0 ) THEN
                    269:          INFO = N + INFO
                    270:          RETURN
                    271:       END IF
                    272: *
                    273: *     Transform problem to standard eigenvalue problem and solve.
                    274: *
                    275:       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
                    276:       CALL ZHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
                    277: *
                    278:       IF( WANTZ ) THEN
                    279: *
                    280: *        Backtransform eigenvectors to the original problem.
                    281: *
                    282:          NEIG = N
                    283:          IF( INFO.GT.0 )
                    284:      $      NEIG = INFO - 1
                    285:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    286: *
                    287: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
1.8       bertrand  288: *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
1.1       bertrand  289: *
                    290:             IF( UPPER ) THEN
                    291:                TRANS = 'N'
                    292:             ELSE
                    293:                TRANS = 'C'
                    294:             END IF
                    295: *
                    296:             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    297:      $                  B, LDB, A, LDA )
                    298: *
                    299:          ELSE IF( ITYPE.EQ.3 ) THEN
                    300: *
                    301: *           For B*A*x=(lambda)*x;
1.8       bertrand  302: *           backtransform eigenvectors: x = L*y or U**H *y
1.1       bertrand  303: *
                    304:             IF( UPPER ) THEN
                    305:                TRANS = 'C'
                    306:             ELSE
                    307:                TRANS = 'N'
                    308:             END IF
                    309: *
                    310:             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
                    311:      $                  B, LDB, A, LDA )
                    312:          END IF
                    313:       END IF
                    314: *
                    315:       WORK( 1 ) = LWKOPT
                    316: *
                    317:       RETURN
                    318: *
                    319: *     End of ZHEGV
                    320: *
                    321:       END

CVSweb interface <joel.bertrand@systella.fr>