File:  [local] / rpl / lapack / lapack / zhegs2.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:23 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHEGS2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegs2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegs2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegs2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, ITYPE, LDA, LDB, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         A( LDA, * ), B( LDB, * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZHEGS2 reduces a complex Hermitian-definite generalized
   38: *> eigenproblem to standard form.
   39: *>
   40: *> If ITYPE = 1, the problem is A*x = lambda*B*x,
   41: *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
   42: *>
   43: *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
   44: *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L.
   45: *>
   46: *> B must have been previously factorized as U**H *U or L*L**H by ZPOTRF.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] ITYPE
   53: *> \verbatim
   54: *>          ITYPE is INTEGER
   55: *>          = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
   56: *>          = 2 or 3: compute U*A*U**H or L**H *A*L.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          Hermitian matrix A is stored, and how B has been factorized.
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrices A and B.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] A
   75: *> \verbatim
   76: *>          A is COMPLEX*16 array, dimension (LDA,N)
   77: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   78: *>          n by n upper triangular part of A contains the upper
   79: *>          triangular part of the matrix A, and the strictly lower
   80: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   81: *>          leading n by n lower triangular part of A contains the lower
   82: *>          triangular part of the matrix A, and the strictly upper
   83: *>          triangular part of A is not referenced.
   84: *>
   85: *>          On exit, if INFO = 0, the transformed matrix, stored in the
   86: *>          same format as A.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDA
   90: *> \verbatim
   91: *>          LDA is INTEGER
   92: *>          The leading dimension of the array A.  LDA >= max(1,N).
   93: *> \endverbatim
   94: *>
   95: *> \param[in,out] B
   96: *> \verbatim
   97: *>          B is COMPLEX*16 array, dimension (LDB,N)
   98: *>          The triangular factor from the Cholesky factorization of B,
   99: *>          as returned by ZPOTRF.
  100: *>          B is modified by the routine but restored on exit.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDB
  104: *> \verbatim
  105: *>          LDB is INTEGER
  106: *>          The leading dimension of the array B.  LDB >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] INFO
  110: *> \verbatim
  111: *>          INFO is INTEGER
  112: *>          = 0:  successful exit.
  113: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  114: *> \endverbatim
  115: *
  116: *  Authors:
  117: *  ========
  118: *
  119: *> \author Univ. of Tennessee
  120: *> \author Univ. of California Berkeley
  121: *> \author Univ. of Colorado Denver
  122: *> \author NAG Ltd.
  123: *
  124: *> \ingroup complex16HEcomputational
  125: *
  126: *  =====================================================================
  127:       SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  128: *
  129: *  -- LAPACK computational routine --
  130: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  131: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  132: *
  133: *     .. Scalar Arguments ..
  134:       CHARACTER          UPLO
  135:       INTEGER            INFO, ITYPE, LDA, LDB, N
  136: *     ..
  137: *     .. Array Arguments ..
  138:       COMPLEX*16         A( LDA, * ), B( LDB, * )
  139: *     ..
  140: *
  141: *  =====================================================================
  142: *
  143: *     .. Parameters ..
  144:       DOUBLE PRECISION   ONE, HALF
  145:       PARAMETER          ( ONE = 1.0D+0, HALF = 0.5D+0 )
  146:       COMPLEX*16         CONE
  147:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  148: *     ..
  149: *     .. Local Scalars ..
  150:       LOGICAL            UPPER
  151:       INTEGER            K
  152:       DOUBLE PRECISION   AKK, BKK
  153:       COMPLEX*16         CT
  154: *     ..
  155: *     .. External Subroutines ..
  156:       EXTERNAL           XERBLA, ZAXPY, ZDSCAL, ZHER2, ZLACGV, ZTRMV,
  157:      $                   ZTRSV
  158: *     ..
  159: *     .. Intrinsic Functions ..
  160:       INTRINSIC          MAX
  161: *     ..
  162: *     .. External Functions ..
  163:       LOGICAL            LSAME
  164:       EXTERNAL           LSAME
  165: *     ..
  166: *     .. Executable Statements ..
  167: *
  168: *     Test the input parameters.
  169: *
  170:       INFO = 0
  171:       UPPER = LSAME( UPLO, 'U' )
  172:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  173:          INFO = -1
  174:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  175:          INFO = -2
  176:       ELSE IF( N.LT.0 ) THEN
  177:          INFO = -3
  178:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  179:          INFO = -5
  180:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  181:          INFO = -7
  182:       END IF
  183:       IF( INFO.NE.0 ) THEN
  184:          CALL XERBLA( 'ZHEGS2', -INFO )
  185:          RETURN
  186:       END IF
  187: *
  188:       IF( ITYPE.EQ.1 ) THEN
  189:          IF( UPPER ) THEN
  190: *
  191: *           Compute inv(U**H)*A*inv(U)
  192: *
  193:             DO 10 K = 1, N
  194: *
  195: *              Update the upper triangle of A(k:n,k:n)
  196: *
  197:                AKK = DBLE( A( K, K ) )
  198:                BKK = DBLE( B( K, K ) )
  199:                AKK = AKK / BKK**2
  200:                A( K, K ) = AKK
  201:                IF( K.LT.N ) THEN
  202:                   CALL ZDSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
  203:                   CT = -HALF*AKK
  204:                   CALL ZLACGV( N-K, A( K, K+1 ), LDA )
  205:                   CALL ZLACGV( N-K, B( K, K+1 ), LDB )
  206:                   CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  207:      $                        LDA )
  208:                   CALL ZHER2( UPLO, N-K, -CONE, A( K, K+1 ), LDA,
  209:      $                        B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
  210:                   CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  211:      $                        LDA )
  212:                   CALL ZLACGV( N-K, B( K, K+1 ), LDB )
  213:                   CALL ZTRSV( UPLO, 'Conjugate transpose', 'Non-unit',
  214:      $                        N-K, B( K+1, K+1 ), LDB, A( K, K+1 ),
  215:      $                        LDA )
  216:                   CALL ZLACGV( N-K, A( K, K+1 ), LDA )
  217:                END IF
  218:    10       CONTINUE
  219:          ELSE
  220: *
  221: *           Compute inv(L)*A*inv(L**H)
  222: *
  223:             DO 20 K = 1, N
  224: *
  225: *              Update the lower triangle of A(k:n,k:n)
  226: *
  227:                AKK = DBLE( A( K, K ) )
  228:                BKK = DBLE( B( K, K ) )
  229:                AKK = AKK / BKK**2
  230:                A( K, K ) = AKK
  231:                IF( K.LT.N ) THEN
  232:                   CALL ZDSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
  233:                   CT = -HALF*AKK
  234:                   CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  235:                   CALL ZHER2( UPLO, N-K, -CONE, A( K+1, K ), 1,
  236:      $                        B( K+1, K ), 1, A( K+1, K+1 ), LDA )
  237:                   CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  238:                   CALL ZTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
  239:      $                        B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
  240:                END IF
  241:    20       CONTINUE
  242:          END IF
  243:       ELSE
  244:          IF( UPPER ) THEN
  245: *
  246: *           Compute U*A*U**H
  247: *
  248:             DO 30 K = 1, N
  249: *
  250: *              Update the upper triangle of A(1:k,1:k)
  251: *
  252:                AKK = DBLE( A( K, K ) )
  253:                BKK = DBLE( B( K, K ) )
  254:                CALL ZTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
  255:      $                     LDB, A( 1, K ), 1 )
  256:                CT = HALF*AKK
  257:                CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  258:                CALL ZHER2( UPLO, K-1, CONE, A( 1, K ), 1, B( 1, K ), 1,
  259:      $                     A, LDA )
  260:                CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  261:                CALL ZDSCAL( K-1, BKK, A( 1, K ), 1 )
  262:                A( K, K ) = AKK*BKK**2
  263:    30       CONTINUE
  264:          ELSE
  265: *
  266: *           Compute L**H *A*L
  267: *
  268:             DO 40 K = 1, N
  269: *
  270: *              Update the lower triangle of A(1:k,1:k)
  271: *
  272:                AKK = DBLE( A( K, K ) )
  273:                BKK = DBLE( B( K, K ) )
  274:                CALL ZLACGV( K-1, A( K, 1 ), LDA )
  275:                CALL ZTRMV( UPLO, 'Conjugate transpose', 'Non-unit', K-1,
  276:      $                     B, LDB, A( K, 1 ), LDA )
  277:                CT = HALF*AKK
  278:                CALL ZLACGV( K-1, B( K, 1 ), LDB )
  279:                CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  280:                CALL ZHER2( UPLO, K-1, CONE, A( K, 1 ), LDA, B( K, 1 ),
  281:      $                     LDB, A, LDA )
  282:                CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  283:                CALL ZLACGV( K-1, B( K, 1 ), LDB )
  284:                CALL ZDSCAL( K-1, BKK, A( K, 1 ), LDA )
  285:                CALL ZLACGV( K-1, A( K, 1 ), LDA )
  286:                A( K, K ) = AKK*BKK**2
  287:    40       CONTINUE
  288:          END IF
  289:       END IF
  290:       RETURN
  291: *
  292: *     End of ZHEGS2
  293: *
  294:       END

CVSweb interface <joel.bertrand@systella.fr>