File:  [local] / rpl / lapack / lapack / zhegs2.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:29 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b ZHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZHEGS2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegs2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegs2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegs2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, ITYPE, LDA, LDB, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         A( LDA, * ), B( LDB, * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZHEGS2 reduces a complex Hermitian-definite generalized
   38: *> eigenproblem to standard form.
   39: *>
   40: *> If ITYPE = 1, the problem is A*x = lambda*B*x,
   41: *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
   42: *>
   43: *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
   44: *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L.
   45: *>
   46: *> B must have been previously factorized as U**H *U or L*L**H by ZPOTRF.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] ITYPE
   53: *> \verbatim
   54: *>          ITYPE is INTEGER
   55: *>          = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
   56: *>          = 2 or 3: compute U*A*U**H or L**H *A*L.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          Hermitian matrix A is stored, and how B has been factorized.
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrices A and B.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in,out] A
   75: *> \verbatim
   76: *>          A is COMPLEX*16 array, dimension (LDA,N)
   77: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   78: *>          n by n upper triangular part of A contains the upper
   79: *>          triangular part of the matrix A, and the strictly lower
   80: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   81: *>          leading n by n lower triangular part of A contains the lower
   82: *>          triangular part of the matrix A, and the strictly upper
   83: *>          triangular part of A is not referenced.
   84: *>
   85: *>          On exit, if INFO = 0, the transformed matrix, stored in the
   86: *>          same format as A.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDA
   90: *> \verbatim
   91: *>          LDA is INTEGER
   92: *>          The leading dimension of the array A.  LDA >= max(1,N).
   93: *> \endverbatim
   94: *>
   95: *> \param[in,out] B
   96: *> \verbatim
   97: *>          B is COMPLEX*16 array, dimension (LDB,N)
   98: *>          The triangular factor from the Cholesky factorization of B,
   99: *>          as returned by ZPOTRF.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDB
  103: *> \verbatim
  104: *>          LDB is INTEGER
  105: *>          The leading dimension of the array B.  LDB >= max(1,N).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] INFO
  109: *> \verbatim
  110: *>          INFO is INTEGER
  111: *>          = 0:  successful exit.
  112: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  113: *> \endverbatim
  114: *
  115: *  Authors:
  116: *  ========
  117: *
  118: *> \author Univ. of Tennessee 
  119: *> \author Univ. of California Berkeley 
  120: *> \author Univ. of Colorado Denver 
  121: *> \author NAG Ltd. 
  122: *
  123: *> \date September 2012
  124: *
  125: *> \ingroup complex16HEcomputational
  126: *
  127: *  =====================================================================
  128:       SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  129: *
  130: *  -- LAPACK computational routine (version 3.4.2) --
  131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133: *     September 2012
  134: *
  135: *     .. Scalar Arguments ..
  136:       CHARACTER          UPLO
  137:       INTEGER            INFO, ITYPE, LDA, LDB, N
  138: *     ..
  139: *     .. Array Arguments ..
  140:       COMPLEX*16         A( LDA, * ), B( LDB, * )
  141: *     ..
  142: *
  143: *  =====================================================================
  144: *
  145: *     .. Parameters ..
  146:       DOUBLE PRECISION   ONE, HALF
  147:       PARAMETER          ( ONE = 1.0D+0, HALF = 0.5D+0 )
  148:       COMPLEX*16         CONE
  149:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  150: *     ..
  151: *     .. Local Scalars ..
  152:       LOGICAL            UPPER
  153:       INTEGER            K
  154:       DOUBLE PRECISION   AKK, BKK
  155:       COMPLEX*16         CT
  156: *     ..
  157: *     .. External Subroutines ..
  158:       EXTERNAL           XERBLA, ZAXPY, ZDSCAL, ZHER2, ZLACGV, ZTRMV,
  159:      $                   ZTRSV
  160: *     ..
  161: *     .. Intrinsic Functions ..
  162:       INTRINSIC          MAX
  163: *     ..
  164: *     .. External Functions ..
  165:       LOGICAL            LSAME
  166:       EXTERNAL           LSAME
  167: *     ..
  168: *     .. Executable Statements ..
  169: *
  170: *     Test the input parameters.
  171: *
  172:       INFO = 0
  173:       UPPER = LSAME( UPLO, 'U' )
  174:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  175:          INFO = -1
  176:       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  177:          INFO = -2
  178:       ELSE IF( N.LT.0 ) THEN
  179:          INFO = -3
  180:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  181:          INFO = -5
  182:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  183:          INFO = -7
  184:       END IF
  185:       IF( INFO.NE.0 ) THEN
  186:          CALL XERBLA( 'ZHEGS2', -INFO )
  187:          RETURN
  188:       END IF
  189: *
  190:       IF( ITYPE.EQ.1 ) THEN
  191:          IF( UPPER ) THEN
  192: *
  193: *           Compute inv(U**H)*A*inv(U)
  194: *
  195:             DO 10 K = 1, N
  196: *
  197: *              Update the upper triangle of A(k:n,k:n)
  198: *
  199:                AKK = A( K, K )
  200:                BKK = B( K, K )
  201:                AKK = AKK / BKK**2
  202:                A( K, K ) = AKK
  203:                IF( K.LT.N ) THEN
  204:                   CALL ZDSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
  205:                   CT = -HALF*AKK
  206:                   CALL ZLACGV( N-K, A( K, K+1 ), LDA )
  207:                   CALL ZLACGV( N-K, B( K, K+1 ), LDB )
  208:                   CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  209:      $                        LDA )
  210:                   CALL ZHER2( UPLO, N-K, -CONE, A( K, K+1 ), LDA,
  211:      $                        B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
  212:                   CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
  213:      $                        LDA )
  214:                   CALL ZLACGV( N-K, B( K, K+1 ), LDB )
  215:                   CALL ZTRSV( UPLO, 'Conjugate transpose', 'Non-unit',
  216:      $                        N-K, B( K+1, K+1 ), LDB, A( K, K+1 ),
  217:      $                        LDA )
  218:                   CALL ZLACGV( N-K, A( K, K+1 ), LDA )
  219:                END IF
  220:    10       CONTINUE
  221:          ELSE
  222: *
  223: *           Compute inv(L)*A*inv(L**H)
  224: *
  225:             DO 20 K = 1, N
  226: *
  227: *              Update the lower triangle of A(k:n,k:n)
  228: *
  229:                AKK = A( K, K )
  230:                BKK = B( K, K )
  231:                AKK = AKK / BKK**2
  232:                A( K, K ) = AKK
  233:                IF( K.LT.N ) THEN
  234:                   CALL ZDSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
  235:                   CT = -HALF*AKK
  236:                   CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  237:                   CALL ZHER2( UPLO, N-K, -CONE, A( K+1, K ), 1,
  238:      $                        B( K+1, K ), 1, A( K+1, K+1 ), LDA )
  239:                   CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
  240:                   CALL ZTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
  241:      $                        B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
  242:                END IF
  243:    20       CONTINUE
  244:          END IF
  245:       ELSE
  246:          IF( UPPER ) THEN
  247: *
  248: *           Compute U*A*U**H
  249: *
  250:             DO 30 K = 1, N
  251: *
  252: *              Update the upper triangle of A(1:k,1:k)
  253: *
  254:                AKK = A( K, K )
  255:                BKK = B( K, K )
  256:                CALL ZTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
  257:      $                     LDB, A( 1, K ), 1 )
  258:                CT = HALF*AKK
  259:                CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  260:                CALL ZHER2( UPLO, K-1, CONE, A( 1, K ), 1, B( 1, K ), 1,
  261:      $                     A, LDA )
  262:                CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
  263:                CALL ZDSCAL( K-1, BKK, A( 1, K ), 1 )
  264:                A( K, K ) = AKK*BKK**2
  265:    30       CONTINUE
  266:          ELSE
  267: *
  268: *           Compute L**H *A*L
  269: *
  270:             DO 40 K = 1, N
  271: *
  272: *              Update the lower triangle of A(1:k,1:k)
  273: *
  274:                AKK = A( K, K )
  275:                BKK = B( K, K )
  276:                CALL ZLACGV( K-1, A( K, 1 ), LDA )
  277:                CALL ZTRMV( UPLO, 'Conjugate transpose', 'Non-unit', K-1,
  278:      $                     B, LDB, A( K, 1 ), LDA )
  279:                CT = HALF*AKK
  280:                CALL ZLACGV( K-1, B( K, 1 ), LDB )
  281:                CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  282:                CALL ZHER2( UPLO, K-1, CONE, A( K, 1 ), LDA, B( K, 1 ),
  283:      $                     LDB, A, LDA )
  284:                CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
  285:                CALL ZLACGV( K-1, B( K, 1 ), LDB )
  286:                CALL ZDSCAL( K-1, BKK, A( K, 1 ), LDA )
  287:                CALL ZLACGV( K-1, A( K, 1 ), LDA )
  288:                A( K, K ) = AKK*BKK**2
  289:    40       CONTINUE
  290:          END IF
  291:       END IF
  292:       RETURN
  293: *
  294: *     End of ZHEGS2
  295: *
  296:       END

CVSweb interface <joel.bertrand@systella.fr>