File:  [local] / rpl / lapack / lapack / zheevx_2stage.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:23 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZHEEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
    2: *
    3: *  @precisions fortran z -> s d c
    4: *
    5: *  =========== DOCUMENTATION ===========
    6: *
    7: * Online html documentation available at
    8: *            http://www.netlib.org/lapack/explore-html/
    9: *
   10: *> \htmlonly
   11: *> Download ZHEEVX_2STAGE + dependencies
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx_2stage.f">
   13: *> [TGZ]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx_2stage.f">
   15: *> [ZIP]</a>
   16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx_2stage.f">
   17: *> [TXT]</a>
   18: *> \endhtmlonly
   19: *
   20: *  Definition:
   21: *  ===========
   22: *
   23: *       SUBROUTINE ZHEEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
   24: *                                 IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
   25: *                                 LWORK, RWORK, IWORK, IFAIL, INFO )
   26: *
   27: *       IMPLICIT NONE
   28: *
   29: *       .. Scalar Arguments ..
   30: *       CHARACTER          JOBZ, RANGE, UPLO
   31: *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
   32: *       DOUBLE PRECISION   ABSTOL, VL, VU
   33: *       ..
   34: *       .. Array Arguments ..
   35: *       INTEGER            IFAIL( * ), IWORK( * )
   36: *       DOUBLE PRECISION   RWORK( * ), W( * )
   37: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
   38: *       ..
   39: *
   40: *
   41: *> \par Purpose:
   42: *  =============
   43: *>
   44: *> \verbatim
   45: *>
   46: *> ZHEEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
   47: *> of a complex Hermitian matrix A using the 2stage technique for
   48: *> the reduction to tridiagonal.  Eigenvalues and eigenvectors can
   49: *> be selected by specifying either a range of values or a range of
   50: *> indices for the desired eigenvalues.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] JOBZ
   57: *> \verbatim
   58: *>          JOBZ is CHARACTER*1
   59: *>          = 'N':  Compute eigenvalues only;
   60: *>          = 'V':  Compute eigenvalues and eigenvectors.
   61: *>                  Not available in this release.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] RANGE
   65: *> \verbatim
   66: *>          RANGE is CHARACTER*1
   67: *>          = 'A': all eigenvalues will be found.
   68: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   69: *>                 will be found.
   70: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] UPLO
   74: *> \verbatim
   75: *>          UPLO is CHARACTER*1
   76: *>          = 'U':  Upper triangle of A is stored;
   77: *>          = 'L':  Lower triangle of A is stored.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The order of the matrix A.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in,out] A
   87: *> \verbatim
   88: *>          A is COMPLEX*16 array, dimension (LDA, N)
   89: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
   90: *>          leading N-by-N upper triangular part of A contains the
   91: *>          upper triangular part of the matrix A.  If UPLO = 'L',
   92: *>          the leading N-by-N lower triangular part of A contains
   93: *>          the lower triangular part of the matrix A.
   94: *>          On exit, the lower triangle (if UPLO='L') or the upper
   95: *>          triangle (if UPLO='U') of A, including the diagonal, is
   96: *>          destroyed.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDA
  100: *> \verbatim
  101: *>          LDA is INTEGER
  102: *>          The leading dimension of the array A.  LDA >= max(1,N).
  103: *> \endverbatim
  104: *>
  105: *> \param[in] VL
  106: *> \verbatim
  107: *>          VL is DOUBLE PRECISION
  108: *>          If RANGE='V', the lower bound of the interval to
  109: *>          be searched for eigenvalues. VL < VU.
  110: *>          Not referenced if RANGE = 'A' or 'I'.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] VU
  114: *> \verbatim
  115: *>          VU is DOUBLE PRECISION
  116: *>          If RANGE='V', the upper bound of the interval to
  117: *>          be searched for eigenvalues. VL < VU.
  118: *>          Not referenced if RANGE = 'A' or 'I'.
  119: *> \endverbatim
  120: *>
  121: *> \param[in] IL
  122: *> \verbatim
  123: *>          IL is INTEGER
  124: *>          If RANGE='I', the index of the
  125: *>          smallest eigenvalue to be returned.
  126: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  127: *>          Not referenced if RANGE = 'A' or 'V'.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] IU
  131: *> \verbatim
  132: *>          IU is INTEGER
  133: *>          If RANGE='I', the index of the
  134: *>          largest eigenvalue to be returned.
  135: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  136: *>          Not referenced if RANGE = 'A' or 'V'.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] ABSTOL
  140: *> \verbatim
  141: *>          ABSTOL is DOUBLE PRECISION
  142: *>          The absolute error tolerance for the eigenvalues.
  143: *>          An approximate eigenvalue is accepted as converged
  144: *>          when it is determined to lie in an interval [a,b]
  145: *>          of width less than or equal to
  146: *>
  147: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  148: *>
  149: *>          where EPS is the machine precision.  If ABSTOL is less than
  150: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  151: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  152: *>          by reducing A to tridiagonal form.
  153: *>
  154: *>          Eigenvalues will be computed most accurately when ABSTOL is
  155: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  156: *>          If this routine returns with INFO>0, indicating that some
  157: *>          eigenvectors did not converge, try setting ABSTOL to
  158: *>          2*DLAMCH('S').
  159: *>
  160: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  161: *>          with Guaranteed High Relative Accuracy," by Demmel and
  162: *>          Kahan, LAPACK Working Note #3.
  163: *> \endverbatim
  164: *>
  165: *> \param[out] M
  166: *> \verbatim
  167: *>          M is INTEGER
  168: *>          The total number of eigenvalues found.  0 <= M <= N.
  169: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  170: *> \endverbatim
  171: *>
  172: *> \param[out] W
  173: *> \verbatim
  174: *>          W is DOUBLE PRECISION array, dimension (N)
  175: *>          On normal exit, the first M elements contain the selected
  176: *>          eigenvalues in ascending order.
  177: *> \endverbatim
  178: *>
  179: *> \param[out] Z
  180: *> \verbatim
  181: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  182: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  183: *>          contain the orthonormal eigenvectors of the matrix A
  184: *>          corresponding to the selected eigenvalues, with the i-th
  185: *>          column of Z holding the eigenvector associated with W(i).
  186: *>          If an eigenvector fails to converge, then that column of Z
  187: *>          contains the latest approximation to the eigenvector, and the
  188: *>          index of the eigenvector is returned in IFAIL.
  189: *>          If JOBZ = 'N', then Z is not referenced.
  190: *>          Note: the user must ensure that at least max(1,M) columns are
  191: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  192: *>          is not known in advance and an upper bound must be used.
  193: *> \endverbatim
  194: *>
  195: *> \param[in] LDZ
  196: *> \verbatim
  197: *>          LDZ is INTEGER
  198: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  199: *>          JOBZ = 'V', LDZ >= max(1,N).
  200: *> \endverbatim
  201: *>
  202: *> \param[out] WORK
  203: *> \verbatim
  204: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  205: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  206: *> \endverbatim
  207: *>
  208: *> \param[in] LWORK
  209: *> \verbatim
  210: *>          LWORK is INTEGER
  211: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
  212: *>          otherwise  
  213: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
  214: *>                                   LWORK = MAX(1, 8*N, dimension) where
  215: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + N
  216: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
  217: *>                                               + max(2*KD*KD, KD*NTHREADS) 
  218: *>                                               + (KD+1)*N + N
  219: *>                                   where KD is the blocking size of the reduction,
  220: *>                                   FACTOPTNB is the blocking used by the QR or LQ
  221: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
  222: *>                                   NTHREADS is the number of threads used when
  223: *>                                   openMP compilation is enabled, otherwise =1.
  224: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
  225: *>
  226: *>          If LWORK = -1, then a workspace query is assumed; the routine
  227: *>          only calculates the optimal size of the WORK array, returns
  228: *>          this value as the first entry of the WORK array, and no error
  229: *>          message related to LWORK is issued by XERBLA.
  230: *> \endverbatim
  231: *>
  232: *> \param[out] RWORK
  233: *> \verbatim
  234: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
  235: *> \endverbatim
  236: *>
  237: *> \param[out] IWORK
  238: *> \verbatim
  239: *>          IWORK is INTEGER array, dimension (5*N)
  240: *> \endverbatim
  241: *>
  242: *> \param[out] IFAIL
  243: *> \verbatim
  244: *>          IFAIL is INTEGER array, dimension (N)
  245: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  246: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  247: *>          indices of the eigenvectors that failed to converge.
  248: *>          If JOBZ = 'N', then IFAIL is not referenced.
  249: *> \endverbatim
  250: *>
  251: *> \param[out] INFO
  252: *> \verbatim
  253: *>          INFO is INTEGER
  254: *>          = 0:  successful exit
  255: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  256: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  257: *>                Their indices are stored in array IFAIL.
  258: *> \endverbatim
  259: *
  260: *  Authors:
  261: *  ========
  262: *
  263: *> \author Univ. of Tennessee
  264: *> \author Univ. of California Berkeley
  265: *> \author Univ. of Colorado Denver
  266: *> \author NAG Ltd.
  267: *
  268: *> \ingroup complex16HEeigen
  269: *
  270: *> \par Further Details:
  271: *  =====================
  272: *>
  273: *> \verbatim
  274: *>
  275: *>  All details about the 2stage techniques are available in:
  276: *>
  277: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  278: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
  279: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
  280: *>  of 2011 International Conference for High Performance Computing,
  281: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  282: *>  Article 8 , 11 pages.
  283: *>  http://doi.acm.org/10.1145/2063384.2063394
  284: *>
  285: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  286: *>  An improved parallel singular value algorithm and its implementation 
  287: *>  for multicore hardware, In Proceedings of 2013 International Conference
  288: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  289: *>  Denver, Colorado, USA, 2013.
  290: *>  Article 90, 12 pages.
  291: *>  http://doi.acm.org/10.1145/2503210.2503292
  292: *>
  293: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  294: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  295: *>  calculations based on fine-grained memory aware tasks.
  296: *>  International Journal of High Performance Computing Applications.
  297: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
  298: *>  http://hpc.sagepub.com/content/28/2/196 
  299: *>
  300: *> \endverbatim
  301: *
  302: *  =====================================================================
  303:       SUBROUTINE ZHEEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
  304:      $                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
  305:      $                          LWORK, RWORK, IWORK, IFAIL, INFO )
  306: *
  307:       IMPLICIT NONE
  308: *
  309: *  -- LAPACK driver routine --
  310: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  311: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  312: *
  313: *     .. Scalar Arguments ..
  314:       CHARACTER          JOBZ, RANGE, UPLO
  315:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
  316:       DOUBLE PRECISION   ABSTOL, VL, VU
  317: *     ..
  318: *     .. Array Arguments ..
  319:       INTEGER            IFAIL( * ), IWORK( * )
  320:       DOUBLE PRECISION   RWORK( * ), W( * )
  321:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
  322: *     ..
  323: *
  324: *  =====================================================================
  325: *
  326: *     .. Parameters ..
  327:       DOUBLE PRECISION   ZERO, ONE
  328:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  329:       COMPLEX*16         CONE
  330:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  331: *     ..
  332: *     .. Local Scalars ..
  333:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  334:      $                   WANTZ
  335:       CHARACTER          ORDER
  336:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  337:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  338:      $                   ITMP1, J, JJ, LLWORK, 
  339:      $                   NSPLIT, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS
  340:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  341:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  342: *     ..
  343: *     .. External Functions ..
  344:       LOGICAL            LSAME
  345:       INTEGER            ILAENV2STAGE
  346:       DOUBLE PRECISION   DLAMCH, ZLANHE
  347:       EXTERNAL           LSAME, DLAMCH, ZLANHE, ILAENV2STAGE
  348: *     ..
  349: *     .. External Subroutines ..
  350:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  351:      $                   ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR, ZUNMTR,
  352:      $                   ZHETRD_2STAGE
  353: *     ..
  354: *     .. Intrinsic Functions ..
  355:       INTRINSIC          DBLE, MAX, MIN, SQRT
  356: *     ..
  357: *     .. Executable Statements ..
  358: *
  359: *     Test the input parameters.
  360: *
  361:       LOWER = LSAME( UPLO, 'L' )
  362:       WANTZ = LSAME( JOBZ, 'V' )
  363:       ALLEIG = LSAME( RANGE, 'A' )
  364:       VALEIG = LSAME( RANGE, 'V' )
  365:       INDEIG = LSAME( RANGE, 'I' )
  366:       LQUERY = ( LWORK.EQ.-1 )
  367: *
  368:       INFO = 0
  369:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
  370:          INFO = -1
  371:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  372:          INFO = -2
  373:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  374:          INFO = -3
  375:       ELSE IF( N.LT.0 ) THEN
  376:          INFO = -4
  377:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  378:          INFO = -6
  379:       ELSE
  380:          IF( VALEIG ) THEN
  381:             IF( N.GT.0 .AND. VU.LE.VL )
  382:      $         INFO = -8
  383:          ELSE IF( INDEIG ) THEN
  384:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  385:                INFO = -9
  386:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  387:                INFO = -10
  388:             END IF
  389:          END IF
  390:       END IF
  391:       IF( INFO.EQ.0 ) THEN
  392:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  393:             INFO = -15
  394:          END IF
  395:       END IF
  396: *
  397:       IF( INFO.EQ.0 ) THEN
  398:          IF( N.LE.1 ) THEN
  399:             LWMIN = 1
  400:             WORK( 1 ) = LWMIN
  401:          ELSE
  402:             KD    = ILAENV2STAGE( 1, 'ZHETRD_2STAGE', JOBZ,
  403:      $                            N, -1, -1, -1 )
  404:             IB    = ILAENV2STAGE( 2, 'ZHETRD_2STAGE', JOBZ,
  405:      $                            N, KD, -1, -1 )
  406:             LHTRD = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', JOBZ,
  407:      $                            N, KD, IB, -1 )
  408:             LWTRD = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', JOBZ,
  409:      $                            N, KD, IB, -1 )
  410:             LWMIN = N + LHTRD + LWTRD
  411:             WORK( 1 )  = LWMIN
  412:          END IF
  413: *
  414:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
  415:      $      INFO = -17
  416:       END IF
  417: *
  418:       IF( INFO.NE.0 ) THEN
  419:          CALL XERBLA( 'ZHEEVX_2STAGE', -INFO )
  420:          RETURN
  421:       ELSE IF( LQUERY ) THEN
  422:          RETURN
  423:       END IF
  424: *
  425: *     Quick return if possible
  426: *
  427:       M = 0
  428:       IF( N.EQ.0 ) THEN
  429:          RETURN
  430:       END IF
  431: *
  432:       IF( N.EQ.1 ) THEN
  433:          IF( ALLEIG .OR. INDEIG ) THEN
  434:             M = 1
  435:          W( 1 ) = DBLE( A( 1, 1 ) )
  436:          ELSE IF( VALEIG ) THEN
  437:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  438:      $           THEN
  439:                M = 1
  440:                W( 1 ) = DBLE( A( 1, 1 ) )
  441:             END IF
  442:          END IF
  443:          IF( WANTZ )
  444:      $      Z( 1, 1 ) = CONE
  445:          RETURN
  446:       END IF
  447: *
  448: *     Get machine constants.
  449: *
  450:       SAFMIN = DLAMCH( 'Safe minimum' )
  451:       EPS    = DLAMCH( 'Precision' )
  452:       SMLNUM = SAFMIN / EPS
  453:       BIGNUM = ONE / SMLNUM
  454:       RMIN   = SQRT( SMLNUM )
  455:       RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  456: *
  457: *     Scale matrix to allowable range, if necessary.
  458: *
  459:       ISCALE = 0
  460:       ABSTLL = ABSTOL
  461:       IF( VALEIG ) THEN
  462:          VLL = VL
  463:          VUU = VU
  464:       END IF
  465:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
  466:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  467:          ISCALE = 1
  468:          SIGMA = RMIN / ANRM
  469:       ELSE IF( ANRM.GT.RMAX ) THEN
  470:          ISCALE = 1
  471:          SIGMA = RMAX / ANRM
  472:       END IF
  473:       IF( ISCALE.EQ.1 ) THEN
  474:          IF( LOWER ) THEN
  475:             DO 10 J = 1, N
  476:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  477:    10       CONTINUE
  478:          ELSE
  479:             DO 20 J = 1, N
  480:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  481:    20       CONTINUE
  482:          END IF
  483:          IF( ABSTOL.GT.0 )
  484:      $      ABSTLL = ABSTOL*SIGMA
  485:          IF( VALEIG ) THEN
  486:             VLL = VL*SIGMA
  487:             VUU = VU*SIGMA
  488:          END IF
  489:       END IF
  490: *
  491: *     Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
  492: *
  493:       INDD    = 1
  494:       INDE    = INDD + N
  495:       INDRWK  = INDE + N
  496:       INDTAU  = 1
  497:       INDHOUS = INDTAU + N
  498:       INDWRK  = INDHOUS + LHTRD
  499:       LLWORK  = LWORK - INDWRK + 1
  500: *
  501:       CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDD ),
  502:      $                    RWORK( INDE ), WORK( INDTAU ), 
  503:      $                    WORK( INDHOUS ), LHTRD, WORK( INDWRK ),
  504:      $                    LLWORK, IINFO )
  505: *
  506: *     If all eigenvalues are desired and ABSTOL is less than or equal to
  507: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
  508: *     some eigenvalue, then try DSTEBZ.
  509: *
  510:       TEST = .FALSE.
  511:       IF( INDEIG ) THEN
  512:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  513:             TEST = .TRUE.
  514:          END IF
  515:       END IF
  516:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  517:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  518:          INDEE = INDRWK + 2*N
  519:          IF( .NOT.WANTZ ) THEN
  520:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  521:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  522:          ELSE
  523:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
  524:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
  525:      $                   WORK( INDWRK ), LLWORK, IINFO )
  526:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  527:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  528:      $                   RWORK( INDRWK ), INFO )
  529:             IF( INFO.EQ.0 ) THEN
  530:                DO 30 I = 1, N
  531:                   IFAIL( I ) = 0
  532:    30          CONTINUE
  533:             END IF
  534:          END IF
  535:          IF( INFO.EQ.0 ) THEN
  536:             M = N
  537:             GO TO 40
  538:          END IF
  539:          INFO = 0
  540:       END IF
  541: *
  542: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  543: *
  544:       IF( WANTZ ) THEN
  545:          ORDER = 'B'
  546:       ELSE
  547:          ORDER = 'E'
  548:       END IF
  549:       INDIBL = 1
  550:       INDISP = INDIBL + N
  551:       INDIWK = INDISP + N
  552:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  553:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  554:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  555:      $             IWORK( INDIWK ), INFO )
  556: *
  557:       IF( WANTZ ) THEN
  558:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  559:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  560:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  561: *
  562: *        Apply unitary matrix used in reduction to tridiagonal
  563: *        form to eigenvectors returned by ZSTEIN.
  564: *
  565:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  566:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
  567:       END IF
  568: *
  569: *     If matrix was scaled, then rescale eigenvalues appropriately.
  570: *
  571:    40 CONTINUE
  572:       IF( ISCALE.EQ.1 ) THEN
  573:          IF( INFO.EQ.0 ) THEN
  574:             IMAX = M
  575:          ELSE
  576:             IMAX = INFO - 1
  577:          END IF
  578:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  579:       END IF
  580: *
  581: *     If eigenvalues are not in order, then sort them, along with
  582: *     eigenvectors.
  583: *
  584:       IF( WANTZ ) THEN
  585:          DO 60 J = 1, M - 1
  586:             I = 0
  587:             TMP1 = W( J )
  588:             DO 50 JJ = J + 1, M
  589:                IF( W( JJ ).LT.TMP1 ) THEN
  590:                   I = JJ
  591:                   TMP1 = W( JJ )
  592:                END IF
  593:    50       CONTINUE
  594: *
  595:             IF( I.NE.0 ) THEN
  596:                ITMP1 = IWORK( INDIBL+I-1 )
  597:                W( I ) = W( J )
  598:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  599:                W( J ) = TMP1
  600:                IWORK( INDIBL+J-1 ) = ITMP1
  601:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  602:                IF( INFO.NE.0 ) THEN
  603:                   ITMP1 = IFAIL( I )
  604:                   IFAIL( I ) = IFAIL( J )
  605:                   IFAIL( J ) = ITMP1
  606:                END IF
  607:             END IF
  608:    60    CONTINUE
  609:       END IF
  610: *
  611: *     Set WORK(1) to optimal complex workspace size.
  612: *
  613:       WORK( 1 ) = LWMIN
  614: *
  615:       RETURN
  616: *
  617: *     End of ZHEEVX_2STAGE
  618: *
  619:       END

CVSweb interface <joel.bertrand@systella.fr>