Annotation of rpl/lapack/lapack/zheevx_2stage.f, revision 1.3

1.1       bertrand    1: *> \brief <b> ZHEEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
                      2: *
                      3: *  @precisions fortran z -> s d c
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download ZHEEVX_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE ZHEEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
                     24: *                                 IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
                     25: *                                 LWORK, RWORK, IWORK, IFAIL, INFO )
                     26: *
                     27: *       IMPLICIT NONE
                     28: *
                     29: *       .. Scalar Arguments ..
                     30: *       CHARACTER          JOBZ, RANGE, UPLO
                     31: *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                     32: *       DOUBLE PRECISION   ABSTOL, VL, VU
                     33: *       ..
                     34: *       .. Array Arguments ..
                     35: *       INTEGER            IFAIL( * ), IWORK( * )
                     36: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     37: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
                     38: *       ..
                     39: *
                     40: *
                     41: *> \par Purpose:
                     42: *  =============
                     43: *>
                     44: *> \verbatim
                     45: *>
                     46: *> ZHEEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
                     47: *> of a complex Hermitian matrix A using the 2stage technique for
                     48: *> the reduction to tridiagonal.  Eigenvalues and eigenvectors can
                     49: *> be selected by specifying either a range of values or a range of
                     50: *> indices for the desired eigenvalues.
                     51: *> \endverbatim
                     52: *
                     53: *  Arguments:
                     54: *  ==========
                     55: *
                     56: *> \param[in] JOBZ
                     57: *> \verbatim
                     58: *>          JOBZ is CHARACTER*1
                     59: *>          = 'N':  Compute eigenvalues only;
                     60: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     61: *>                  Not available in this release.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] RANGE
                     65: *> \verbatim
                     66: *>          RANGE is CHARACTER*1
                     67: *>          = 'A': all eigenvalues will be found.
                     68: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     69: *>                 will be found.
                     70: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] UPLO
                     74: *> \verbatim
                     75: *>          UPLO is CHARACTER*1
                     76: *>          = 'U':  Upper triangle of A is stored;
                     77: *>          = 'L':  Lower triangle of A is stored.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The order of the matrix A.  N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in,out] A
                     87: *> \verbatim
                     88: *>          A is COMPLEX*16 array, dimension (LDA, N)
                     89: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     90: *>          leading N-by-N upper triangular part of A contains the
                     91: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     92: *>          the leading N-by-N lower triangular part of A contains
                     93: *>          the lower triangular part of the matrix A.
                     94: *>          On exit, the lower triangle (if UPLO='L') or the upper
                     95: *>          triangle (if UPLO='U') of A, including the diagonal, is
                     96: *>          destroyed.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] LDA
                    100: *> \verbatim
                    101: *>          LDA is INTEGER
                    102: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] VL
                    106: *> \verbatim
                    107: *>          VL is DOUBLE PRECISION
                    108: *>          If RANGE='V', the lower bound of the interval to
                    109: *>          be searched for eigenvalues. VL < VU.
                    110: *>          Not referenced if RANGE = 'A' or 'I'.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] VU
                    114: *> \verbatim
                    115: *>          VU is DOUBLE PRECISION
                    116: *>          If RANGE='V', the upper bound of the interval to
                    117: *>          be searched for eigenvalues. VL < VU.
                    118: *>          Not referenced if RANGE = 'A' or 'I'.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] IL
                    122: *> \verbatim
                    123: *>          IL is INTEGER
                    124: *>          If RANGE='I', the index of the
                    125: *>          smallest eigenvalue to be returned.
                    126: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    127: *>          Not referenced if RANGE = 'A' or 'V'.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] IU
                    131: *> \verbatim
                    132: *>          IU is INTEGER
                    133: *>          If RANGE='I', the index of the
                    134: *>          largest eigenvalue to be returned.
                    135: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    136: *>          Not referenced if RANGE = 'A' or 'V'.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] ABSTOL
                    140: *> \verbatim
                    141: *>          ABSTOL is DOUBLE PRECISION
                    142: *>          The absolute error tolerance for the eigenvalues.
                    143: *>          An approximate eigenvalue is accepted as converged
                    144: *>          when it is determined to lie in an interval [a,b]
                    145: *>          of width less than or equal to
                    146: *>
                    147: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    148: *>
                    149: *>          where EPS is the machine precision.  If ABSTOL is less than
                    150: *>          or equal to zero, then  EPS*|T|  will be used in its place,
                    151: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
                    152: *>          by reducing A to tridiagonal form.
                    153: *>
                    154: *>          Eigenvalues will be computed most accurately when ABSTOL is
                    155: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    156: *>          If this routine returns with INFO>0, indicating that some
                    157: *>          eigenvectors did not converge, try setting ABSTOL to
                    158: *>          2*DLAMCH('S').
                    159: *>
                    160: *>          See "Computing Small Singular Values of Bidiagonal Matrices
                    161: *>          with Guaranteed High Relative Accuracy," by Demmel and
                    162: *>          Kahan, LAPACK Working Note #3.
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[out] M
                    166: *> \verbatim
                    167: *>          M is INTEGER
                    168: *>          The total number of eigenvalues found.  0 <= M <= N.
                    169: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[out] W
                    173: *> \verbatim
                    174: *>          W is DOUBLE PRECISION array, dimension (N)
                    175: *>          On normal exit, the first M elements contain the selected
                    176: *>          eigenvalues in ascending order.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[out] Z
                    180: *> \verbatim
                    181: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
                    182: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    183: *>          contain the orthonormal eigenvectors of the matrix A
                    184: *>          corresponding to the selected eigenvalues, with the i-th
                    185: *>          column of Z holding the eigenvector associated with W(i).
                    186: *>          If an eigenvector fails to converge, then that column of Z
                    187: *>          contains the latest approximation to the eigenvector, and the
                    188: *>          index of the eigenvector is returned in IFAIL.
                    189: *>          If JOBZ = 'N', then Z is not referenced.
                    190: *>          Note: the user must ensure that at least max(1,M) columns are
                    191: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
                    192: *>          is not known in advance and an upper bound must be used.
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[in] LDZ
                    196: *> \verbatim
                    197: *>          LDZ is INTEGER
                    198: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    199: *>          JOBZ = 'V', LDZ >= max(1,N).
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[out] WORK
                    203: *> \verbatim
                    204: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    205: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    206: *> \endverbatim
                    207: *>
                    208: *> \param[in] LWORK
                    209: *> \verbatim
                    210: *>          LWORK is INTEGER
                    211: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
                    212: *>          otherwise  
                    213: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    214: *>                                   LWORK = MAX(1, 8*N, dimension) where
                    215: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + N
                    216: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
                    217: *>                                               + max(2*KD*KD, KD*NTHREADS) 
                    218: *>                                               + (KD+1)*N + N
                    219: *>                                   where KD is the blocking size of the reduction,
                    220: *>                                   FACTOPTNB is the blocking used by the QR or LQ
                    221: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
                    222: *>                                   NTHREADS is the number of threads used when
                    223: *>                                   openMP compilation is enabled, otherwise =1.
                    224: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
                    225: *>
                    226: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    227: *>          only calculates the optimal size of the WORK array, returns
                    228: *>          this value as the first entry of the WORK array, and no error
                    229: *>          message related to LWORK is issued by XERBLA.
                    230: *> \endverbatim
                    231: *>
                    232: *> \param[out] RWORK
                    233: *> \verbatim
                    234: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
                    235: *> \endverbatim
                    236: *>
                    237: *> \param[out] IWORK
                    238: *> \verbatim
                    239: *>          IWORK is INTEGER array, dimension (5*N)
                    240: *> \endverbatim
                    241: *>
                    242: *> \param[out] IFAIL
                    243: *> \verbatim
                    244: *>          IFAIL is INTEGER array, dimension (N)
                    245: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    246: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    247: *>          indices of the eigenvectors that failed to converge.
                    248: *>          If JOBZ = 'N', then IFAIL is not referenced.
                    249: *> \endverbatim
                    250: *>
                    251: *> \param[out] INFO
                    252: *> \verbatim
                    253: *>          INFO is INTEGER
                    254: *>          = 0:  successful exit
                    255: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    256: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    257: *>                Their indices are stored in array IFAIL.
                    258: *> \endverbatim
                    259: *
                    260: *  Authors:
                    261: *  ========
                    262: *
                    263: *> \author Univ. of Tennessee
                    264: *> \author Univ. of California Berkeley
                    265: *> \author Univ. of Colorado Denver
                    266: *> \author NAG Ltd.
                    267: *
                    268: *> \date June 2016
                    269: *
                    270: *> \ingroup complex16HEeigen
                    271: *
                    272: *> \par Further Details:
                    273: *  =====================
                    274: *>
                    275: *> \verbatim
                    276: *>
                    277: *>  All details about the 2stage techniques are available in:
                    278: *>
                    279: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    280: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    281: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    282: *>  of 2011 International Conference for High Performance Computing,
                    283: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    284: *>  Article 8 , 11 pages.
                    285: *>  http://doi.acm.org/10.1145/2063384.2063394
                    286: *>
                    287: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    288: *>  An improved parallel singular value algorithm and its implementation 
                    289: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    290: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    291: *>  Denver, Colorado, USA, 2013.
                    292: *>  Article 90, 12 pages.
                    293: *>  http://doi.acm.org/10.1145/2503210.2503292
                    294: *>
                    295: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    296: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    297: *>  calculations based on fine-grained memory aware tasks.
                    298: *>  International Journal of High Performance Computing Applications.
                    299: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    300: *>  http://hpc.sagepub.com/content/28/2/196 
                    301: *>
                    302: *> \endverbatim
                    303: *
                    304: *  =====================================================================
                    305:       SUBROUTINE ZHEEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
                    306:      $                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
                    307:      $                          LWORK, RWORK, IWORK, IFAIL, INFO )
                    308: *
                    309:       IMPLICIT NONE
                    310: *
1.3     ! bertrand  311: *  -- LAPACK driver routine (version 3.8.0) --
1.1       bertrand  312: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    313: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    314: *     June 2016
                    315: *
                    316: *     .. Scalar Arguments ..
                    317:       CHARACTER          JOBZ, RANGE, UPLO
                    318:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                    319:       DOUBLE PRECISION   ABSTOL, VL, VU
                    320: *     ..
                    321: *     .. Array Arguments ..
                    322:       INTEGER            IFAIL( * ), IWORK( * )
                    323:       DOUBLE PRECISION   RWORK( * ), W( * )
                    324:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
                    325: *     ..
                    326: *
                    327: *  =====================================================================
                    328: *
                    329: *     .. Parameters ..
                    330:       DOUBLE PRECISION   ZERO, ONE
                    331:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    332:       COMPLEX*16         CONE
                    333:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    334: *     ..
                    335: *     .. Local Scalars ..
                    336:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
                    337:      $                   WANTZ
                    338:       CHARACTER          ORDER
                    339:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    340:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
                    341:      $                   ITMP1, J, JJ, LLWORK, 
                    342:      $                   NSPLIT, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS
                    343:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    344:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    345: *     ..
                    346: *     .. External Functions ..
                    347:       LOGICAL            LSAME
1.3     ! bertrand  348:       INTEGER            ILAENV2STAGE
1.1       bertrand  349:       DOUBLE PRECISION   DLAMCH, ZLANHE
1.3     ! bertrand  350:       EXTERNAL           LSAME, DLAMCH, ZLANHE, ILAENV2STAGE
1.1       bertrand  351: *     ..
                    352: *     .. External Subroutines ..
                    353:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
                    354:      $                   ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR, ZUNMTR,
                    355:      $                   ZHETRD_2STAGE
                    356: *     ..
                    357: *     .. Intrinsic Functions ..
                    358:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    359: *     ..
                    360: *     .. Executable Statements ..
                    361: *
                    362: *     Test the input parameters.
                    363: *
                    364:       LOWER = LSAME( UPLO, 'L' )
                    365:       WANTZ = LSAME( JOBZ, 'V' )
                    366:       ALLEIG = LSAME( RANGE, 'A' )
                    367:       VALEIG = LSAME( RANGE, 'V' )
                    368:       INDEIG = LSAME( RANGE, 'I' )
                    369:       LQUERY = ( LWORK.EQ.-1 )
                    370: *
                    371:       INFO = 0
                    372:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    373:          INFO = -1
                    374:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    375:          INFO = -2
                    376:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    377:          INFO = -3
                    378:       ELSE IF( N.LT.0 ) THEN
                    379:          INFO = -4
                    380:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    381:          INFO = -6
                    382:       ELSE
                    383:          IF( VALEIG ) THEN
                    384:             IF( N.GT.0 .AND. VU.LE.VL )
                    385:      $         INFO = -8
                    386:          ELSE IF( INDEIG ) THEN
                    387:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    388:                INFO = -9
                    389:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    390:                INFO = -10
                    391:             END IF
                    392:          END IF
                    393:       END IF
                    394:       IF( INFO.EQ.0 ) THEN
                    395:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    396:             INFO = -15
                    397:          END IF
                    398:       END IF
                    399: *
                    400:       IF( INFO.EQ.0 ) THEN
                    401:          IF( N.LE.1 ) THEN
                    402:             LWMIN = 1
                    403:             WORK( 1 ) = LWMIN
                    404:          ELSE
1.3     ! bertrand  405:             KD    = ILAENV2STAGE( 1, 'ZHETRD_2STAGE', JOBZ,
        !           406:      $                            N, -1, -1, -1 )
        !           407:             IB    = ILAENV2STAGE( 2, 'ZHETRD_2STAGE', JOBZ,
        !           408:      $                            N, KD, -1, -1 )
        !           409:             LHTRD = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', JOBZ,
        !           410:      $                            N, KD, IB, -1 )
        !           411:             LWTRD = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', JOBZ,
        !           412:      $                            N, KD, IB, -1 )
1.1       bertrand  413:             LWMIN = N + LHTRD + LWTRD
                    414:             WORK( 1 )  = LWMIN
                    415:          END IF
                    416: *
                    417:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
                    418:      $      INFO = -17
                    419:       END IF
                    420: *
                    421:       IF( INFO.NE.0 ) THEN
                    422:          CALL XERBLA( 'ZHEEVX_2STAGE', -INFO )
                    423:          RETURN
                    424:       ELSE IF( LQUERY ) THEN
                    425:          RETURN
                    426:       END IF
                    427: *
                    428: *     Quick return if possible
                    429: *
                    430:       M = 0
                    431:       IF( N.EQ.0 ) THEN
                    432:          RETURN
                    433:       END IF
                    434: *
                    435:       IF( N.EQ.1 ) THEN
                    436:          IF( ALLEIG .OR. INDEIG ) THEN
                    437:             M = 1
                    438:          W( 1 ) = DBLE( A( 1, 1 ) )
                    439:          ELSE IF( VALEIG ) THEN
                    440:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
                    441:      $           THEN
                    442:                M = 1
                    443:                W( 1 ) = DBLE( A( 1, 1 ) )
                    444:             END IF
                    445:          END IF
                    446:          IF( WANTZ )
                    447:      $      Z( 1, 1 ) = CONE
                    448:          RETURN
                    449:       END IF
                    450: *
                    451: *     Get machine constants.
                    452: *
                    453:       SAFMIN = DLAMCH( 'Safe minimum' )
                    454:       EPS    = DLAMCH( 'Precision' )
                    455:       SMLNUM = SAFMIN / EPS
                    456:       BIGNUM = ONE / SMLNUM
                    457:       RMIN   = SQRT( SMLNUM )
                    458:       RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    459: *
                    460: *     Scale matrix to allowable range, if necessary.
                    461: *
                    462:       ISCALE = 0
                    463:       ABSTLL = ABSTOL
                    464:       IF( VALEIG ) THEN
                    465:          VLL = VL
                    466:          VUU = VU
                    467:       END IF
                    468:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
                    469:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    470:          ISCALE = 1
                    471:          SIGMA = RMIN / ANRM
                    472:       ELSE IF( ANRM.GT.RMAX ) THEN
                    473:          ISCALE = 1
                    474:          SIGMA = RMAX / ANRM
                    475:       END IF
                    476:       IF( ISCALE.EQ.1 ) THEN
                    477:          IF( LOWER ) THEN
                    478:             DO 10 J = 1, N
                    479:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    480:    10       CONTINUE
                    481:          ELSE
                    482:             DO 20 J = 1, N
                    483:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
                    484:    20       CONTINUE
                    485:          END IF
                    486:          IF( ABSTOL.GT.0 )
                    487:      $      ABSTLL = ABSTOL*SIGMA
                    488:          IF( VALEIG ) THEN
                    489:             VLL = VL*SIGMA
                    490:             VUU = VU*SIGMA
                    491:          END IF
                    492:       END IF
                    493: *
                    494: *     Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
                    495: *
                    496:       INDD    = 1
                    497:       INDE    = INDD + N
                    498:       INDRWK  = INDE + N
                    499:       INDTAU  = 1
                    500:       INDHOUS = INDTAU + N
                    501:       INDWRK  = INDHOUS + LHTRD
                    502:       LLWORK  = LWORK - INDWRK + 1
                    503: *
                    504:       CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDD ),
                    505:      $                    RWORK( INDE ), WORK( INDTAU ), 
                    506:      $                    WORK( INDHOUS ), LHTRD, WORK( INDWRK ),
                    507:      $                    LLWORK, IINFO )
                    508: *
                    509: *     If all eigenvalues are desired and ABSTOL is less than or equal to
                    510: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
                    511: *     some eigenvalue, then try DSTEBZ.
                    512: *
                    513:       TEST = .FALSE.
                    514:       IF( INDEIG ) THEN
                    515:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    516:             TEST = .TRUE.
                    517:          END IF
                    518:       END IF
                    519:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    520:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    521:          INDEE = INDRWK + 2*N
                    522:          IF( .NOT.WANTZ ) THEN
                    523:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    524:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    525:          ELSE
                    526:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
                    527:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
                    528:      $                   WORK( INDWRK ), LLWORK, IINFO )
                    529:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    530:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    531:      $                   RWORK( INDRWK ), INFO )
                    532:             IF( INFO.EQ.0 ) THEN
                    533:                DO 30 I = 1, N
                    534:                   IFAIL( I ) = 0
                    535:    30          CONTINUE
                    536:             END IF
                    537:          END IF
                    538:          IF( INFO.EQ.0 ) THEN
                    539:             M = N
                    540:             GO TO 40
                    541:          END IF
                    542:          INFO = 0
                    543:       END IF
                    544: *
                    545: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    546: *
                    547:       IF( WANTZ ) THEN
                    548:          ORDER = 'B'
                    549:       ELSE
                    550:          ORDER = 'E'
                    551:       END IF
                    552:       INDIBL = 1
                    553:       INDISP = INDIBL + N
                    554:       INDIWK = INDISP + N
                    555:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    556:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    557:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    558:      $             IWORK( INDIWK ), INFO )
                    559: *
                    560:       IF( WANTZ ) THEN
                    561:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    562:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    563:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    564: *
                    565: *        Apply unitary matrix used in reduction to tridiagonal
                    566: *        form to eigenvectors returned by ZSTEIN.
                    567: *
                    568:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    569:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
                    570:       END IF
                    571: *
                    572: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    573: *
                    574:    40 CONTINUE
                    575:       IF( ISCALE.EQ.1 ) THEN
                    576:          IF( INFO.EQ.0 ) THEN
                    577:             IMAX = M
                    578:          ELSE
                    579:             IMAX = INFO - 1
                    580:          END IF
                    581:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    582:       END IF
                    583: *
                    584: *     If eigenvalues are not in order, then sort them, along with
                    585: *     eigenvectors.
                    586: *
                    587:       IF( WANTZ ) THEN
                    588:          DO 60 J = 1, M - 1
                    589:             I = 0
                    590:             TMP1 = W( J )
                    591:             DO 50 JJ = J + 1, M
                    592:                IF( W( JJ ).LT.TMP1 ) THEN
                    593:                   I = JJ
                    594:                   TMP1 = W( JJ )
                    595:                END IF
                    596:    50       CONTINUE
                    597: *
                    598:             IF( I.NE.0 ) THEN
                    599:                ITMP1 = IWORK( INDIBL+I-1 )
                    600:                W( I ) = W( J )
                    601:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    602:                W( J ) = TMP1
                    603:                IWORK( INDIBL+J-1 ) = ITMP1
                    604:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    605:                IF( INFO.NE.0 ) THEN
                    606:                   ITMP1 = IFAIL( I )
                    607:                   IFAIL( I ) = IFAIL( J )
                    608:                   IFAIL( J ) = ITMP1
                    609:                END IF
                    610:             END IF
                    611:    60    CONTINUE
                    612:       END IF
                    613: *
                    614: *     Set WORK(1) to optimal complex workspace size.
                    615: *
                    616:       WORK( 1 ) = LWMIN
                    617: *
                    618:       RETURN
                    619: *
                    620: *     End of ZHEEVX_2STAGE
                    621: *
                    622:       END

CVSweb interface <joel.bertrand@systella.fr>