Annotation of rpl/lapack/lapack/zheevx_2stage.f, revision 1.1

1.1     ! bertrand    1: *> \brief <b> ZHEEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
        !             2: *
        !             3: *  @precisions fortran z -> s d c
        !             4: *
        !             5: *  =========== DOCUMENTATION ===========
        !             6: *
        !             7: * Online html documentation available at
        !             8: *            http://www.netlib.org/lapack/explore-html/
        !             9: *
        !            10: *> \htmlonly
        !            11: *> Download ZHEEVX_2STAGE + dependencies
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx_2stage.f">
        !            13: *> [TGZ]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx_2stage.f">
        !            15: *> [ZIP]</a>
        !            16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx_2stage.f">
        !            17: *> [TXT]</a>
        !            18: *> \endhtmlonly
        !            19: *
        !            20: *  Definition:
        !            21: *  ===========
        !            22: *
        !            23: *       SUBROUTINE ZHEEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
        !            24: *                                 IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
        !            25: *                                 LWORK, RWORK, IWORK, IFAIL, INFO )
        !            26: *
        !            27: *       IMPLICIT NONE
        !            28: *
        !            29: *       .. Scalar Arguments ..
        !            30: *       CHARACTER          JOBZ, RANGE, UPLO
        !            31: *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
        !            32: *       DOUBLE PRECISION   ABSTOL, VL, VU
        !            33: *       ..
        !            34: *       .. Array Arguments ..
        !            35: *       INTEGER            IFAIL( * ), IWORK( * )
        !            36: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            37: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
        !            38: *       ..
        !            39: *
        !            40: *
        !            41: *> \par Purpose:
        !            42: *  =============
        !            43: *>
        !            44: *> \verbatim
        !            45: *>
        !            46: *> ZHEEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
        !            47: *> of a complex Hermitian matrix A using the 2stage technique for
        !            48: *> the reduction to tridiagonal.  Eigenvalues and eigenvectors can
        !            49: *> be selected by specifying either a range of values or a range of
        !            50: *> indices for the desired eigenvalues.
        !            51: *> \endverbatim
        !            52: *
        !            53: *  Arguments:
        !            54: *  ==========
        !            55: *
        !            56: *> \param[in] JOBZ
        !            57: *> \verbatim
        !            58: *>          JOBZ is CHARACTER*1
        !            59: *>          = 'N':  Compute eigenvalues only;
        !            60: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            61: *>                  Not available in this release.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] RANGE
        !            65: *> \verbatim
        !            66: *>          RANGE is CHARACTER*1
        !            67: *>          = 'A': all eigenvalues will be found.
        !            68: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            69: *>                 will be found.
        !            70: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            71: *> \endverbatim
        !            72: *>
        !            73: *> \param[in] UPLO
        !            74: *> \verbatim
        !            75: *>          UPLO is CHARACTER*1
        !            76: *>          = 'U':  Upper triangle of A is stored;
        !            77: *>          = 'L':  Lower triangle of A is stored.
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in] N
        !            81: *> \verbatim
        !            82: *>          N is INTEGER
        !            83: *>          The order of the matrix A.  N >= 0.
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[in,out] A
        !            87: *> \verbatim
        !            88: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !            89: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
        !            90: *>          leading N-by-N upper triangular part of A contains the
        !            91: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !            92: *>          the leading N-by-N lower triangular part of A contains
        !            93: *>          the lower triangular part of the matrix A.
        !            94: *>          On exit, the lower triangle (if UPLO='L') or the upper
        !            95: *>          triangle (if UPLO='U') of A, including the diagonal, is
        !            96: *>          destroyed.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] LDA
        !           100: *> \verbatim
        !           101: *>          LDA is INTEGER
        !           102: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in] VL
        !           106: *> \verbatim
        !           107: *>          VL is DOUBLE PRECISION
        !           108: *>          If RANGE='V', the lower bound of the interval to
        !           109: *>          be searched for eigenvalues. VL < VU.
        !           110: *>          Not referenced if RANGE = 'A' or 'I'.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in] VU
        !           114: *> \verbatim
        !           115: *>          VU is DOUBLE PRECISION
        !           116: *>          If RANGE='V', the upper bound of the interval to
        !           117: *>          be searched for eigenvalues. VL < VU.
        !           118: *>          Not referenced if RANGE = 'A' or 'I'.
        !           119: *> \endverbatim
        !           120: *>
        !           121: *> \param[in] IL
        !           122: *> \verbatim
        !           123: *>          IL is INTEGER
        !           124: *>          If RANGE='I', the index of the
        !           125: *>          smallest eigenvalue to be returned.
        !           126: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           127: *>          Not referenced if RANGE = 'A' or 'V'.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[in] IU
        !           131: *> \verbatim
        !           132: *>          IU is INTEGER
        !           133: *>          If RANGE='I', the index of the
        !           134: *>          largest eigenvalue to be returned.
        !           135: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           136: *>          Not referenced if RANGE = 'A' or 'V'.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[in] ABSTOL
        !           140: *> \verbatim
        !           141: *>          ABSTOL is DOUBLE PRECISION
        !           142: *>          The absolute error tolerance for the eigenvalues.
        !           143: *>          An approximate eigenvalue is accepted as converged
        !           144: *>          when it is determined to lie in an interval [a,b]
        !           145: *>          of width less than or equal to
        !           146: *>
        !           147: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           148: *>
        !           149: *>          where EPS is the machine precision.  If ABSTOL is less than
        !           150: *>          or equal to zero, then  EPS*|T|  will be used in its place,
        !           151: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           152: *>          by reducing A to tridiagonal form.
        !           153: *>
        !           154: *>          Eigenvalues will be computed most accurately when ABSTOL is
        !           155: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
        !           156: *>          If this routine returns with INFO>0, indicating that some
        !           157: *>          eigenvectors did not converge, try setting ABSTOL to
        !           158: *>          2*DLAMCH('S').
        !           159: *>
        !           160: *>          See "Computing Small Singular Values of Bidiagonal Matrices
        !           161: *>          with Guaranteed High Relative Accuracy," by Demmel and
        !           162: *>          Kahan, LAPACK Working Note #3.
        !           163: *> \endverbatim
        !           164: *>
        !           165: *> \param[out] M
        !           166: *> \verbatim
        !           167: *>          M is INTEGER
        !           168: *>          The total number of eigenvalues found.  0 <= M <= N.
        !           169: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           170: *> \endverbatim
        !           171: *>
        !           172: *> \param[out] W
        !           173: *> \verbatim
        !           174: *>          W is DOUBLE PRECISION array, dimension (N)
        !           175: *>          On normal exit, the first M elements contain the selected
        !           176: *>          eigenvalues in ascending order.
        !           177: *> \endverbatim
        !           178: *>
        !           179: *> \param[out] Z
        !           180: *> \verbatim
        !           181: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
        !           182: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
        !           183: *>          contain the orthonormal eigenvectors of the matrix A
        !           184: *>          corresponding to the selected eigenvalues, with the i-th
        !           185: *>          column of Z holding the eigenvector associated with W(i).
        !           186: *>          If an eigenvector fails to converge, then that column of Z
        !           187: *>          contains the latest approximation to the eigenvector, and the
        !           188: *>          index of the eigenvector is returned in IFAIL.
        !           189: *>          If JOBZ = 'N', then Z is not referenced.
        !           190: *>          Note: the user must ensure that at least max(1,M) columns are
        !           191: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           192: *>          is not known in advance and an upper bound must be used.
        !           193: *> \endverbatim
        !           194: *>
        !           195: *> \param[in] LDZ
        !           196: *> \verbatim
        !           197: *>          LDZ is INTEGER
        !           198: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           199: *>          JOBZ = 'V', LDZ >= max(1,N).
        !           200: *> \endverbatim
        !           201: *>
        !           202: *> \param[out] WORK
        !           203: *> \verbatim
        !           204: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           205: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           206: *> \endverbatim
        !           207: *>
        !           208: *> \param[in] LWORK
        !           209: *> \verbatim
        !           210: *>          LWORK is INTEGER
        !           211: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
        !           212: *>          otherwise  
        !           213: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
        !           214: *>                                   LWORK = MAX(1, 8*N, dimension) where
        !           215: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + N
        !           216: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
        !           217: *>                                               + max(2*KD*KD, KD*NTHREADS) 
        !           218: *>                                               + (KD+1)*N + N
        !           219: *>                                   where KD is the blocking size of the reduction,
        !           220: *>                                   FACTOPTNB is the blocking used by the QR or LQ
        !           221: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
        !           222: *>                                   NTHREADS is the number of threads used when
        !           223: *>                                   openMP compilation is enabled, otherwise =1.
        !           224: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
        !           225: *>
        !           226: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           227: *>          only calculates the optimal size of the WORK array, returns
        !           228: *>          this value as the first entry of the WORK array, and no error
        !           229: *>          message related to LWORK is issued by XERBLA.
        !           230: *> \endverbatim
        !           231: *>
        !           232: *> \param[out] RWORK
        !           233: *> \verbatim
        !           234: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
        !           235: *> \endverbatim
        !           236: *>
        !           237: *> \param[out] IWORK
        !           238: *> \verbatim
        !           239: *>          IWORK is INTEGER array, dimension (5*N)
        !           240: *> \endverbatim
        !           241: *>
        !           242: *> \param[out] IFAIL
        !           243: *> \verbatim
        !           244: *>          IFAIL is INTEGER array, dimension (N)
        !           245: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
        !           246: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
        !           247: *>          indices of the eigenvectors that failed to converge.
        !           248: *>          If JOBZ = 'N', then IFAIL is not referenced.
        !           249: *> \endverbatim
        !           250: *>
        !           251: *> \param[out] INFO
        !           252: *> \verbatim
        !           253: *>          INFO is INTEGER
        !           254: *>          = 0:  successful exit
        !           255: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           256: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
        !           257: *>                Their indices are stored in array IFAIL.
        !           258: *> \endverbatim
        !           259: *
        !           260: *  Authors:
        !           261: *  ========
        !           262: *
        !           263: *> \author Univ. of Tennessee
        !           264: *> \author Univ. of California Berkeley
        !           265: *> \author Univ. of Colorado Denver
        !           266: *> \author NAG Ltd.
        !           267: *
        !           268: *> \date June 2016
        !           269: *
        !           270: *> \ingroup complex16HEeigen
        !           271: *
        !           272: *> \par Further Details:
        !           273: *  =====================
        !           274: *>
        !           275: *> \verbatim
        !           276: *>
        !           277: *>  All details about the 2stage techniques are available in:
        !           278: *>
        !           279: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
        !           280: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
        !           281: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
        !           282: *>  of 2011 International Conference for High Performance Computing,
        !           283: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
        !           284: *>  Article 8 , 11 pages.
        !           285: *>  http://doi.acm.org/10.1145/2063384.2063394
        !           286: *>
        !           287: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
        !           288: *>  An improved parallel singular value algorithm and its implementation 
        !           289: *>  for multicore hardware, In Proceedings of 2013 International Conference
        !           290: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
        !           291: *>  Denver, Colorado, USA, 2013.
        !           292: *>  Article 90, 12 pages.
        !           293: *>  http://doi.acm.org/10.1145/2503210.2503292
        !           294: *>
        !           295: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
        !           296: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
        !           297: *>  calculations based on fine-grained memory aware tasks.
        !           298: *>  International Journal of High Performance Computing Applications.
        !           299: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
        !           300: *>  http://hpc.sagepub.com/content/28/2/196 
        !           301: *>
        !           302: *> \endverbatim
        !           303: *
        !           304: *  =====================================================================
        !           305:       SUBROUTINE ZHEEVX_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
        !           306:      $                          IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
        !           307:      $                          LWORK, RWORK, IWORK, IFAIL, INFO )
        !           308: *
        !           309:       IMPLICIT NONE
        !           310: *
        !           311: *  -- LAPACK driver routine (version 3.7.0) --
        !           312: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           313: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           314: *     June 2016
        !           315: *
        !           316: *     .. Scalar Arguments ..
        !           317:       CHARACTER          JOBZ, RANGE, UPLO
        !           318:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
        !           319:       DOUBLE PRECISION   ABSTOL, VL, VU
        !           320: *     ..
        !           321: *     .. Array Arguments ..
        !           322:       INTEGER            IFAIL( * ), IWORK( * )
        !           323:       DOUBLE PRECISION   RWORK( * ), W( * )
        !           324:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
        !           325: *     ..
        !           326: *
        !           327: *  =====================================================================
        !           328: *
        !           329: *     .. Parameters ..
        !           330:       DOUBLE PRECISION   ZERO, ONE
        !           331:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           332:       COMPLEX*16         CONE
        !           333:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
        !           334: *     ..
        !           335: *     .. Local Scalars ..
        !           336:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
        !           337:      $                   WANTZ
        !           338:       CHARACTER          ORDER
        !           339:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
        !           340:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
        !           341:      $                   ITMP1, J, JJ, LLWORK, 
        !           342:      $                   NSPLIT, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS
        !           343:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
        !           344:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
        !           345: *     ..
        !           346: *     .. External Functions ..
        !           347:       LOGICAL            LSAME
        !           348:       INTEGER            ILAENV
        !           349:       DOUBLE PRECISION   DLAMCH, ZLANHE
        !           350:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
        !           351: *     ..
        !           352: *     .. External Subroutines ..
        !           353:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
        !           354:      $                   ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR, ZUNMTR,
        !           355:      $                   ZHETRD_2STAGE
        !           356: *     ..
        !           357: *     .. Intrinsic Functions ..
        !           358:       INTRINSIC          DBLE, MAX, MIN, SQRT
        !           359: *     ..
        !           360: *     .. Executable Statements ..
        !           361: *
        !           362: *     Test the input parameters.
        !           363: *
        !           364:       LOWER = LSAME( UPLO, 'L' )
        !           365:       WANTZ = LSAME( JOBZ, 'V' )
        !           366:       ALLEIG = LSAME( RANGE, 'A' )
        !           367:       VALEIG = LSAME( RANGE, 'V' )
        !           368:       INDEIG = LSAME( RANGE, 'I' )
        !           369:       LQUERY = ( LWORK.EQ.-1 )
        !           370: *
        !           371:       INFO = 0
        !           372:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
        !           373:          INFO = -1
        !           374:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
        !           375:          INFO = -2
        !           376:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
        !           377:          INFO = -3
        !           378:       ELSE IF( N.LT.0 ) THEN
        !           379:          INFO = -4
        !           380:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           381:          INFO = -6
        !           382:       ELSE
        !           383:          IF( VALEIG ) THEN
        !           384:             IF( N.GT.0 .AND. VU.LE.VL )
        !           385:      $         INFO = -8
        !           386:          ELSE IF( INDEIG ) THEN
        !           387:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
        !           388:                INFO = -9
        !           389:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
        !           390:                INFO = -10
        !           391:             END IF
        !           392:          END IF
        !           393:       END IF
        !           394:       IF( INFO.EQ.0 ) THEN
        !           395:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           396:             INFO = -15
        !           397:          END IF
        !           398:       END IF
        !           399: *
        !           400:       IF( INFO.EQ.0 ) THEN
        !           401:          IF( N.LE.1 ) THEN
        !           402:             LWMIN = 1
        !           403:             WORK( 1 ) = LWMIN
        !           404:          ELSE
        !           405:             KD    = ILAENV( 17, 'ZHETRD_2STAGE', JOBZ, N, -1, -1, -1 )
        !           406:             IB    = ILAENV( 18, 'ZHETRD_2STAGE', JOBZ, N, KD, -1, -1 )
        !           407:             LHTRD = ILAENV( 19, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
        !           408:             LWTRD = ILAENV( 20, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
        !           409:             LWMIN = N + LHTRD + LWTRD
        !           410:             WORK( 1 )  = LWMIN
        !           411:          END IF
        !           412: *
        !           413:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
        !           414:      $      INFO = -17
        !           415:       END IF
        !           416: *
        !           417:       IF( INFO.NE.0 ) THEN
        !           418:          CALL XERBLA( 'ZHEEVX_2STAGE', -INFO )
        !           419:          RETURN
        !           420:       ELSE IF( LQUERY ) THEN
        !           421:          RETURN
        !           422:       END IF
        !           423: *
        !           424: *     Quick return if possible
        !           425: *
        !           426:       M = 0
        !           427:       IF( N.EQ.0 ) THEN
        !           428:          RETURN
        !           429:       END IF
        !           430: *
        !           431:       IF( N.EQ.1 ) THEN
        !           432:          IF( ALLEIG .OR. INDEIG ) THEN
        !           433:             M = 1
        !           434:          W( 1 ) = DBLE( A( 1, 1 ) )
        !           435:          ELSE IF( VALEIG ) THEN
        !           436:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
        !           437:      $           THEN
        !           438:                M = 1
        !           439:                W( 1 ) = DBLE( A( 1, 1 ) )
        !           440:             END IF
        !           441:          END IF
        !           442:          IF( WANTZ )
        !           443:      $      Z( 1, 1 ) = CONE
        !           444:          RETURN
        !           445:       END IF
        !           446: *
        !           447: *     Get machine constants.
        !           448: *
        !           449:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           450:       EPS    = DLAMCH( 'Precision' )
        !           451:       SMLNUM = SAFMIN / EPS
        !           452:       BIGNUM = ONE / SMLNUM
        !           453:       RMIN   = SQRT( SMLNUM )
        !           454:       RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
        !           455: *
        !           456: *     Scale matrix to allowable range, if necessary.
        !           457: *
        !           458:       ISCALE = 0
        !           459:       ABSTLL = ABSTOL
        !           460:       IF( VALEIG ) THEN
        !           461:          VLL = VL
        !           462:          VUU = VU
        !           463:       END IF
        !           464:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
        !           465:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           466:          ISCALE = 1
        !           467:          SIGMA = RMIN / ANRM
        !           468:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           469:          ISCALE = 1
        !           470:          SIGMA = RMAX / ANRM
        !           471:       END IF
        !           472:       IF( ISCALE.EQ.1 ) THEN
        !           473:          IF( LOWER ) THEN
        !           474:             DO 10 J = 1, N
        !           475:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
        !           476:    10       CONTINUE
        !           477:          ELSE
        !           478:             DO 20 J = 1, N
        !           479:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
        !           480:    20       CONTINUE
        !           481:          END IF
        !           482:          IF( ABSTOL.GT.0 )
        !           483:      $      ABSTLL = ABSTOL*SIGMA
        !           484:          IF( VALEIG ) THEN
        !           485:             VLL = VL*SIGMA
        !           486:             VUU = VU*SIGMA
        !           487:          END IF
        !           488:       END IF
        !           489: *
        !           490: *     Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
        !           491: *
        !           492:       INDD    = 1
        !           493:       INDE    = INDD + N
        !           494:       INDRWK  = INDE + N
        !           495:       INDTAU  = 1
        !           496:       INDHOUS = INDTAU + N
        !           497:       INDWRK  = INDHOUS + LHTRD
        !           498:       LLWORK  = LWORK - INDWRK + 1
        !           499: *
        !           500:       CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDD ),
        !           501:      $                    RWORK( INDE ), WORK( INDTAU ), 
        !           502:      $                    WORK( INDHOUS ), LHTRD, WORK( INDWRK ),
        !           503:      $                    LLWORK, IINFO )
        !           504: *
        !           505: *     If all eigenvalues are desired and ABSTOL is less than or equal to
        !           506: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
        !           507: *     some eigenvalue, then try DSTEBZ.
        !           508: *
        !           509:       TEST = .FALSE.
        !           510:       IF( INDEIG ) THEN
        !           511:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
        !           512:             TEST = .TRUE.
        !           513:          END IF
        !           514:       END IF
        !           515:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
        !           516:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
        !           517:          INDEE = INDRWK + 2*N
        !           518:          IF( .NOT.WANTZ ) THEN
        !           519:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
        !           520:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
        !           521:          ELSE
        !           522:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
        !           523:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
        !           524:      $                   WORK( INDWRK ), LLWORK, IINFO )
        !           525:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
        !           526:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
        !           527:      $                   RWORK( INDRWK ), INFO )
        !           528:             IF( INFO.EQ.0 ) THEN
        !           529:                DO 30 I = 1, N
        !           530:                   IFAIL( I ) = 0
        !           531:    30          CONTINUE
        !           532:             END IF
        !           533:          END IF
        !           534:          IF( INFO.EQ.0 ) THEN
        !           535:             M = N
        !           536:             GO TO 40
        !           537:          END IF
        !           538:          INFO = 0
        !           539:       END IF
        !           540: *
        !           541: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
        !           542: *
        !           543:       IF( WANTZ ) THEN
        !           544:          ORDER = 'B'
        !           545:       ELSE
        !           546:          ORDER = 'E'
        !           547:       END IF
        !           548:       INDIBL = 1
        !           549:       INDISP = INDIBL + N
        !           550:       INDIWK = INDISP + N
        !           551:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
        !           552:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
        !           553:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
        !           554:      $             IWORK( INDIWK ), INFO )
        !           555: *
        !           556:       IF( WANTZ ) THEN
        !           557:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
        !           558:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
        !           559:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
        !           560: *
        !           561: *        Apply unitary matrix used in reduction to tridiagonal
        !           562: *        form to eigenvectors returned by ZSTEIN.
        !           563: *
        !           564:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
        !           565:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
        !           566:       END IF
        !           567: *
        !           568: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           569: *
        !           570:    40 CONTINUE
        !           571:       IF( ISCALE.EQ.1 ) THEN
        !           572:          IF( INFO.EQ.0 ) THEN
        !           573:             IMAX = M
        !           574:          ELSE
        !           575:             IMAX = INFO - 1
        !           576:          END IF
        !           577:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
        !           578:       END IF
        !           579: *
        !           580: *     If eigenvalues are not in order, then sort them, along with
        !           581: *     eigenvectors.
        !           582: *
        !           583:       IF( WANTZ ) THEN
        !           584:          DO 60 J = 1, M - 1
        !           585:             I = 0
        !           586:             TMP1 = W( J )
        !           587:             DO 50 JJ = J + 1, M
        !           588:                IF( W( JJ ).LT.TMP1 ) THEN
        !           589:                   I = JJ
        !           590:                   TMP1 = W( JJ )
        !           591:                END IF
        !           592:    50       CONTINUE
        !           593: *
        !           594:             IF( I.NE.0 ) THEN
        !           595:                ITMP1 = IWORK( INDIBL+I-1 )
        !           596:                W( I ) = W( J )
        !           597:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
        !           598:                W( J ) = TMP1
        !           599:                IWORK( INDIBL+J-1 ) = ITMP1
        !           600:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
        !           601:                IF( INFO.NE.0 ) THEN
        !           602:                   ITMP1 = IFAIL( I )
        !           603:                   IFAIL( I ) = IFAIL( J )
        !           604:                   IFAIL( J ) = ITMP1
        !           605:                END IF
        !           606:             END IF
        !           607:    60    CONTINUE
        !           608:       END IF
        !           609: *
        !           610: *     Set WORK(1) to optimal complex workspace size.
        !           611: *
        !           612:       WORK( 1 ) = LWMIN
        !           613: *
        !           614:       RETURN
        !           615: *
        !           616: *     End of ZHEEVX_2STAGE
        !           617: *
        !           618:       END

CVSweb interface <joel.bertrand@systella.fr>