File:  [local] / rpl / lapack / lapack / zheevx.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:46 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
    2:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
    3:      $                   IWORK, IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IFAIL( * ), IWORK( * )
   17:       DOUBLE PRECISION   RWORK( * ), W( * )
   18:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
   25: *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
   26: *  be selected by specifying either a range of values or a range of
   27: *  indices for the desired eigenvalues.
   28: *
   29: *  Arguments
   30: *  =========
   31: *
   32: *  JOBZ    (input) CHARACTER*1
   33: *          = 'N':  Compute eigenvalues only;
   34: *          = 'V':  Compute eigenvalues and eigenvectors.
   35: *
   36: *  RANGE   (input) CHARACTER*1
   37: *          = 'A': all eigenvalues will be found.
   38: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   39: *                 will be found.
   40: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   41: *
   42: *  UPLO    (input) CHARACTER*1
   43: *          = 'U':  Upper triangle of A is stored;
   44: *          = 'L':  Lower triangle of A is stored.
   45: *
   46: *  N       (input) INTEGER
   47: *          The order of the matrix A.  N >= 0.
   48: *
   49: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
   50: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
   51: *          leading N-by-N upper triangular part of A contains the
   52: *          upper triangular part of the matrix A.  If UPLO = 'L',
   53: *          the leading N-by-N lower triangular part of A contains
   54: *          the lower triangular part of the matrix A.
   55: *          On exit, the lower triangle (if UPLO='L') or the upper
   56: *          triangle (if UPLO='U') of A, including the diagonal, is
   57: *          destroyed.
   58: *
   59: *  LDA     (input) INTEGER
   60: *          The leading dimension of the array A.  LDA >= max(1,N).
   61: *
   62: *  VL      (input) DOUBLE PRECISION
   63: *  VU      (input) DOUBLE PRECISION
   64: *          If RANGE='V', the lower and upper bounds of the interval to
   65: *          be searched for eigenvalues. VL < VU.
   66: *          Not referenced if RANGE = 'A' or 'I'.
   67: *
   68: *  IL      (input) INTEGER
   69: *  IU      (input) INTEGER
   70: *          If RANGE='I', the indices (in ascending order) of the
   71: *          smallest and largest eigenvalues to be returned.
   72: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   73: *          Not referenced if RANGE = 'A' or 'V'.
   74: *
   75: *  ABSTOL  (input) DOUBLE PRECISION
   76: *          The absolute error tolerance for the eigenvalues.
   77: *          An approximate eigenvalue is accepted as converged
   78: *          when it is determined to lie in an interval [a,b]
   79: *          of width less than or equal to
   80: *
   81: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
   82: *
   83: *          where EPS is the machine precision.  If ABSTOL is less than
   84: *          or equal to zero, then  EPS*|T|  will be used in its place,
   85: *          where |T| is the 1-norm of the tridiagonal matrix obtained
   86: *          by reducing A to tridiagonal form.
   87: *
   88: *          Eigenvalues will be computed most accurately when ABSTOL is
   89: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
   90: *          If this routine returns with INFO>0, indicating that some
   91: *          eigenvectors did not converge, try setting ABSTOL to
   92: *          2*DLAMCH('S').
   93: *
   94: *          See "Computing Small Singular Values of Bidiagonal Matrices
   95: *          with Guaranteed High Relative Accuracy," by Demmel and
   96: *          Kahan, LAPACK Working Note #3.
   97: *
   98: *  M       (output) INTEGER
   99: *          The total number of eigenvalues found.  0 <= M <= N.
  100: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  101: *
  102: *  W       (output) DOUBLE PRECISION array, dimension (N)
  103: *          On normal exit, the first M elements contain the selected
  104: *          eigenvalues in ascending order.
  105: *
  106: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
  107: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  108: *          contain the orthonormal eigenvectors of the matrix A
  109: *          corresponding to the selected eigenvalues, with the i-th
  110: *          column of Z holding the eigenvector associated with W(i).
  111: *          If an eigenvector fails to converge, then that column of Z
  112: *          contains the latest approximation to the eigenvector, and the
  113: *          index of the eigenvector is returned in IFAIL.
  114: *          If JOBZ = 'N', then Z is not referenced.
  115: *          Note: the user must ensure that at least max(1,M) columns are
  116: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  117: *          is not known in advance and an upper bound must be used.
  118: *
  119: *  LDZ     (input) INTEGER
  120: *          The leading dimension of the array Z.  LDZ >= 1, and if
  121: *          JOBZ = 'V', LDZ >= max(1,N).
  122: *
  123: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  124: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  125: *
  126: *  LWORK   (input) INTEGER
  127: *          The length of the array WORK.  LWORK >= 1, when N <= 1;
  128: *          otherwise 2*N.
  129: *          For optimal efficiency, LWORK >= (NB+1)*N,
  130: *          where NB is the max of the blocksize for ZHETRD and for
  131: *          ZUNMTR as returned by ILAENV.
  132: *
  133: *          If LWORK = -1, then a workspace query is assumed; the routine
  134: *          only calculates the optimal size of the WORK array, returns
  135: *          this value as the first entry of the WORK array, and no error
  136: *          message related to LWORK is issued by XERBLA.
  137: *
  138: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
  139: *
  140: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  141: *
  142: *  IFAIL   (output) INTEGER array, dimension (N)
  143: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  144: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  145: *          indices of the eigenvectors that failed to converge.
  146: *          If JOBZ = 'N', then IFAIL is not referenced.
  147: *
  148: *  INFO    (output) INTEGER
  149: *          = 0:  successful exit
  150: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  151: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
  152: *                Their indices are stored in array IFAIL.
  153: *
  154: *  =====================================================================
  155: *
  156: *     .. Parameters ..
  157:       DOUBLE PRECISION   ZERO, ONE
  158:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  159:       COMPLEX*16         CONE
  160:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  161: *     ..
  162: *     .. Local Scalars ..
  163:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  164:      $                   WANTZ
  165:       CHARACTER          ORDER
  166:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  167:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  168:      $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
  169:      $                   NSPLIT
  170:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  171:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  172: *     ..
  173: *     .. External Functions ..
  174:       LOGICAL            LSAME
  175:       INTEGER            ILAENV
  176:       DOUBLE PRECISION   DLAMCH, ZLANHE
  177:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
  178: *     ..
  179: *     .. External Subroutines ..
  180:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  181:      $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
  182:      $                   ZUNMTR
  183: *     ..
  184: *     .. Intrinsic Functions ..
  185:       INTRINSIC          DBLE, MAX, MIN, SQRT
  186: *     ..
  187: *     .. Executable Statements ..
  188: *
  189: *     Test the input parameters.
  190: *
  191:       LOWER = LSAME( UPLO, 'L' )
  192:       WANTZ = LSAME( JOBZ, 'V' )
  193:       ALLEIG = LSAME( RANGE, 'A' )
  194:       VALEIG = LSAME( RANGE, 'V' )
  195:       INDEIG = LSAME( RANGE, 'I' )
  196:       LQUERY = ( LWORK.EQ.-1 )
  197: *
  198:       INFO = 0
  199:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  200:          INFO = -1
  201:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  202:          INFO = -2
  203:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  204:          INFO = -3
  205:       ELSE IF( N.LT.0 ) THEN
  206:          INFO = -4
  207:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  208:          INFO = -6
  209:       ELSE
  210:          IF( VALEIG ) THEN
  211:             IF( N.GT.0 .AND. VU.LE.VL )
  212:      $         INFO = -8
  213:          ELSE IF( INDEIG ) THEN
  214:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  215:                INFO = -9
  216:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  217:                INFO = -10
  218:             END IF
  219:          END IF
  220:       END IF
  221:       IF( INFO.EQ.0 ) THEN
  222:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  223:             INFO = -15
  224:          END IF
  225:       END IF
  226: *
  227:       IF( INFO.EQ.0 ) THEN
  228:          IF( N.LE.1 ) THEN
  229:             LWKMIN = 1
  230:             WORK( 1 ) = LWKMIN
  231:          ELSE
  232:             LWKMIN = 2*N
  233:             NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  234:             NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  235:             LWKOPT = MAX( 1, ( NB + 1 )*N )
  236:             WORK( 1 ) = LWKOPT
  237:          END IF
  238: *
  239:          IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY )
  240:      $      INFO = -17
  241:       END IF
  242: *
  243:       IF( INFO.NE.0 ) THEN
  244:          CALL XERBLA( 'ZHEEVX', -INFO )
  245:          RETURN
  246:       ELSE IF( LQUERY ) THEN
  247:          RETURN
  248:       END IF
  249: *
  250: *     Quick return if possible
  251: *
  252:       M = 0
  253:       IF( N.EQ.0 ) THEN
  254:          RETURN
  255:       END IF
  256: *
  257:       IF( N.EQ.1 ) THEN
  258:          IF( ALLEIG .OR. INDEIG ) THEN
  259:             M = 1
  260:             W( 1 ) = A( 1, 1 )
  261:          ELSE IF( VALEIG ) THEN
  262:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  263:      $           THEN
  264:                M = 1
  265:                W( 1 ) = A( 1, 1 )
  266:             END IF
  267:          END IF
  268:          IF( WANTZ )
  269:      $      Z( 1, 1 ) = CONE
  270:          RETURN
  271:       END IF
  272: *
  273: *     Get machine constants.
  274: *
  275:       SAFMIN = DLAMCH( 'Safe minimum' )
  276:       EPS = DLAMCH( 'Precision' )
  277:       SMLNUM = SAFMIN / EPS
  278:       BIGNUM = ONE / SMLNUM
  279:       RMIN = SQRT( SMLNUM )
  280:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  281: *
  282: *     Scale matrix to allowable range, if necessary.
  283: *
  284:       ISCALE = 0
  285:       ABSTLL = ABSTOL
  286:       IF( VALEIG ) THEN
  287:          VLL = VL
  288:          VUU = VU
  289:       END IF
  290:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
  291:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  292:          ISCALE = 1
  293:          SIGMA = RMIN / ANRM
  294:       ELSE IF( ANRM.GT.RMAX ) THEN
  295:          ISCALE = 1
  296:          SIGMA = RMAX / ANRM
  297:       END IF
  298:       IF( ISCALE.EQ.1 ) THEN
  299:          IF( LOWER ) THEN
  300:             DO 10 J = 1, N
  301:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  302:    10       CONTINUE
  303:          ELSE
  304:             DO 20 J = 1, N
  305:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  306:    20       CONTINUE
  307:          END IF
  308:          IF( ABSTOL.GT.0 )
  309:      $      ABSTLL = ABSTOL*SIGMA
  310:          IF( VALEIG ) THEN
  311:             VLL = VL*SIGMA
  312:             VUU = VU*SIGMA
  313:          END IF
  314:       END IF
  315: *
  316: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  317: *
  318:       INDD = 1
  319:       INDE = INDD + N
  320:       INDRWK = INDE + N
  321:       INDTAU = 1
  322:       INDWRK = INDTAU + N
  323:       LLWORK = LWORK - INDWRK + 1
  324:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
  325:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
  326: *
  327: *     If all eigenvalues are desired and ABSTOL is less than or equal to
  328: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
  329: *     some eigenvalue, then try DSTEBZ.
  330: *
  331:       TEST = .FALSE.
  332:       IF( INDEIG ) THEN
  333:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  334:             TEST = .TRUE.
  335:          END IF
  336:       END IF
  337:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  338:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  339:          INDEE = INDRWK + 2*N
  340:          IF( .NOT.WANTZ ) THEN
  341:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  342:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  343:          ELSE
  344:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
  345:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
  346:      $                   WORK( INDWRK ), LLWORK, IINFO )
  347:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  348:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  349:      $                   RWORK( INDRWK ), INFO )
  350:             IF( INFO.EQ.0 ) THEN
  351:                DO 30 I = 1, N
  352:                   IFAIL( I ) = 0
  353:    30          CONTINUE
  354:             END IF
  355:          END IF
  356:          IF( INFO.EQ.0 ) THEN
  357:             M = N
  358:             GO TO 40
  359:          END IF
  360:          INFO = 0
  361:       END IF
  362: *
  363: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  364: *
  365:       IF( WANTZ ) THEN
  366:          ORDER = 'B'
  367:       ELSE
  368:          ORDER = 'E'
  369:       END IF
  370:       INDIBL = 1
  371:       INDISP = INDIBL + N
  372:       INDIWK = INDISP + N
  373:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  374:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  375:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  376:      $             IWORK( INDIWK ), INFO )
  377: *
  378:       IF( WANTZ ) THEN
  379:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  380:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  381:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  382: *
  383: *        Apply unitary matrix used in reduction to tridiagonal
  384: *        form to eigenvectors returned by ZSTEIN.
  385: *
  386:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  387:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
  388:       END IF
  389: *
  390: *     If matrix was scaled, then rescale eigenvalues appropriately.
  391: *
  392:    40 CONTINUE
  393:       IF( ISCALE.EQ.1 ) THEN
  394:          IF( INFO.EQ.0 ) THEN
  395:             IMAX = M
  396:          ELSE
  397:             IMAX = INFO - 1
  398:          END IF
  399:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  400:       END IF
  401: *
  402: *     If eigenvalues are not in order, then sort them, along with
  403: *     eigenvectors.
  404: *
  405:       IF( WANTZ ) THEN
  406:          DO 60 J = 1, M - 1
  407:             I = 0
  408:             TMP1 = W( J )
  409:             DO 50 JJ = J + 1, M
  410:                IF( W( JJ ).LT.TMP1 ) THEN
  411:                   I = JJ
  412:                   TMP1 = W( JJ )
  413:                END IF
  414:    50       CONTINUE
  415: *
  416:             IF( I.NE.0 ) THEN
  417:                ITMP1 = IWORK( INDIBL+I-1 )
  418:                W( I ) = W( J )
  419:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  420:                W( J ) = TMP1
  421:                IWORK( INDIBL+J-1 ) = ITMP1
  422:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  423:                IF( INFO.NE.0 ) THEN
  424:                   ITMP1 = IFAIL( I )
  425:                   IFAIL( I ) = IFAIL( J )
  426:                   IFAIL( J ) = ITMP1
  427:                END IF
  428:             END IF
  429:    60    CONTINUE
  430:       END IF
  431: *
  432: *     Set WORK(1) to optimal complex workspace size.
  433: *
  434:       WORK( 1 ) = LWKOPT
  435: *
  436:       RETURN
  437: *
  438: *     End of ZHEEVX
  439: *
  440:       END

CVSweb interface <joel.bertrand@systella.fr>