File:  [local] / rpl / lapack / lapack / zheevx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:19 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief <b> ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHEEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
   23: *                          IWORK, IFAIL, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * ), W( * )
   33: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
   43: *> of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
   44: *> be selected by specifying either a range of values or a range of
   45: *> indices for the desired eigenvalues.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] JOBZ
   52: *> \verbatim
   53: *>          JOBZ is CHARACTER*1
   54: *>          = 'N':  Compute eigenvalues only;
   55: *>          = 'V':  Compute eigenvalues and eigenvectors.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] RANGE
   59: *> \verbatim
   60: *>          RANGE is CHARACTER*1
   61: *>          = 'A': all eigenvalues will be found.
   62: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   63: *>                 will be found.
   64: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] UPLO
   68: *> \verbatim
   69: *>          UPLO is CHARACTER*1
   70: *>          = 'U':  Upper triangle of A is stored;
   71: *>          = 'L':  Lower triangle of A is stored.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>          The order of the matrix A.  N >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] A
   81: *> \verbatim
   82: *>          A is COMPLEX*16 array, dimension (LDA, N)
   83: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
   84: *>          leading N-by-N upper triangular part of A contains the
   85: *>          upper triangular part of the matrix A.  If UPLO = 'L',
   86: *>          the leading N-by-N lower triangular part of A contains
   87: *>          the lower triangular part of the matrix A.
   88: *>          On exit, the lower triangle (if UPLO='L') or the upper
   89: *>          triangle (if UPLO='U') of A, including the diagonal, is
   90: *>          destroyed.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] LDA
   94: *> \verbatim
   95: *>          LDA is INTEGER
   96: *>          The leading dimension of the array A.  LDA >= max(1,N).
   97: *> \endverbatim
   98: *>
   99: *> \param[in] VL
  100: *> \verbatim
  101: *>          VL is DOUBLE PRECISION
  102: *>          If RANGE='V', the lower bound of the interval to
  103: *>          be searched for eigenvalues. VL < VU.
  104: *>          Not referenced if RANGE = 'A' or 'I'.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] VU
  108: *> \verbatim
  109: *>          VU is DOUBLE PRECISION
  110: *>          If RANGE='V', the upper bound of the interval to
  111: *>          be searched for eigenvalues. VL < VU.
  112: *>          Not referenced if RANGE = 'A' or 'I'.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] IL
  116: *> \verbatim
  117: *>          IL is INTEGER
  118: *>          If RANGE='I', the index of the
  119: *>          smallest eigenvalue to be returned.
  120: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  121: *>          Not referenced if RANGE = 'A' or 'V'.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] IU
  125: *> \verbatim
  126: *>          IU is INTEGER
  127: *>          If RANGE='I', the index of the
  128: *>          largest eigenvalue to be returned.
  129: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  130: *>          Not referenced if RANGE = 'A' or 'V'.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] ABSTOL
  134: *> \verbatim
  135: *>          ABSTOL is DOUBLE PRECISION
  136: *>          The absolute error tolerance for the eigenvalues.
  137: *>          An approximate eigenvalue is accepted as converged
  138: *>          when it is determined to lie in an interval [a,b]
  139: *>          of width less than or equal to
  140: *>
  141: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  142: *>
  143: *>          where EPS is the machine precision.  If ABSTOL is less than
  144: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  145: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  146: *>          by reducing A to tridiagonal form.
  147: *>
  148: *>          Eigenvalues will be computed most accurately when ABSTOL is
  149: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  150: *>          If this routine returns with INFO>0, indicating that some
  151: *>          eigenvectors did not converge, try setting ABSTOL to
  152: *>          2*DLAMCH('S').
  153: *>
  154: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  155: *>          with Guaranteed High Relative Accuracy," by Demmel and
  156: *>          Kahan, LAPACK Working Note #3.
  157: *> \endverbatim
  158: *>
  159: *> \param[out] M
  160: *> \verbatim
  161: *>          M is INTEGER
  162: *>          The total number of eigenvalues found.  0 <= M <= N.
  163: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  164: *> \endverbatim
  165: *>
  166: *> \param[out] W
  167: *> \verbatim
  168: *>          W is DOUBLE PRECISION array, dimension (N)
  169: *>          On normal exit, the first M elements contain the selected
  170: *>          eigenvalues in ascending order.
  171: *> \endverbatim
  172: *>
  173: *> \param[out] Z
  174: *> \verbatim
  175: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  176: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  177: *>          contain the orthonormal eigenvectors of the matrix A
  178: *>          corresponding to the selected eigenvalues, with the i-th
  179: *>          column of Z holding the eigenvector associated with W(i).
  180: *>          If an eigenvector fails to converge, then that column of Z
  181: *>          contains the latest approximation to the eigenvector, and the
  182: *>          index of the eigenvector is returned in IFAIL.
  183: *>          If JOBZ = 'N', then Z is not referenced.
  184: *>          Note: the user must ensure that at least max(1,M) columns are
  185: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  186: *>          is not known in advance and an upper bound must be used.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] LDZ
  190: *> \verbatim
  191: *>          LDZ is INTEGER
  192: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  193: *>          JOBZ = 'V', LDZ >= max(1,N).
  194: *> \endverbatim
  195: *>
  196: *> \param[out] WORK
  197: *> \verbatim
  198: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  199: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LWORK
  203: *> \verbatim
  204: *>          LWORK is INTEGER
  205: *>          The length of the array WORK.  LWORK >= 1, when N <= 1;
  206: *>          otherwise 2*N.
  207: *>          For optimal efficiency, LWORK >= (NB+1)*N,
  208: *>          where NB is the max of the blocksize for ZHETRD and for
  209: *>          ZUNMTR as returned by ILAENV.
  210: *>
  211: *>          If LWORK = -1, then a workspace query is assumed; the routine
  212: *>          only calculates the optimal size of the WORK array, returns
  213: *>          this value as the first entry of the WORK array, and no error
  214: *>          message related to LWORK is issued by XERBLA.
  215: *> \endverbatim
  216: *>
  217: *> \param[out] RWORK
  218: *> \verbatim
  219: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
  220: *> \endverbatim
  221: *>
  222: *> \param[out] IWORK
  223: *> \verbatim
  224: *>          IWORK is INTEGER array, dimension (5*N)
  225: *> \endverbatim
  226: *>
  227: *> \param[out] IFAIL
  228: *> \verbatim
  229: *>          IFAIL is INTEGER array, dimension (N)
  230: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  231: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  232: *>          indices of the eigenvectors that failed to converge.
  233: *>          If JOBZ = 'N', then IFAIL is not referenced.
  234: *> \endverbatim
  235: *>
  236: *> \param[out] INFO
  237: *> \verbatim
  238: *>          INFO is INTEGER
  239: *>          = 0:  successful exit
  240: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  241: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  242: *>                Their indices are stored in array IFAIL.
  243: *> \endverbatim
  244: *
  245: *  Authors:
  246: *  ========
  247: *
  248: *> \author Univ. of Tennessee
  249: *> \author Univ. of California Berkeley
  250: *> \author Univ. of Colorado Denver
  251: *> \author NAG Ltd.
  252: *
  253: *> \date June 2016
  254: *
  255: *> \ingroup complex16HEeigen
  256: *
  257: *  =====================================================================
  258:       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  259:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
  260:      $                   IWORK, IFAIL, INFO )
  261: *
  262: *  -- LAPACK driver routine (version 3.7.0) --
  263: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  264: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  265: *     June 2016
  266: *
  267: *     .. Scalar Arguments ..
  268:       CHARACTER          JOBZ, RANGE, UPLO
  269:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
  270:       DOUBLE PRECISION   ABSTOL, VL, VU
  271: *     ..
  272: *     .. Array Arguments ..
  273:       INTEGER            IFAIL( * ), IWORK( * )
  274:       DOUBLE PRECISION   RWORK( * ), W( * )
  275:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
  276: *     ..
  277: *
  278: *  =====================================================================
  279: *
  280: *     .. Parameters ..
  281:       DOUBLE PRECISION   ZERO, ONE
  282:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  283:       COMPLEX*16         CONE
  284:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  285: *     ..
  286: *     .. Local Scalars ..
  287:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  288:      $                   WANTZ
  289:       CHARACTER          ORDER
  290:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  291:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  292:      $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
  293:      $                   NSPLIT
  294:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  295:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  296: *     ..
  297: *     .. External Functions ..
  298:       LOGICAL            LSAME
  299:       INTEGER            ILAENV
  300:       DOUBLE PRECISION   DLAMCH, ZLANHE
  301:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
  302: *     ..
  303: *     .. External Subroutines ..
  304:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  305:      $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
  306:      $                   ZUNMTR
  307: *     ..
  308: *     .. Intrinsic Functions ..
  309:       INTRINSIC          DBLE, MAX, MIN, SQRT
  310: *     ..
  311: *     .. Executable Statements ..
  312: *
  313: *     Test the input parameters.
  314: *
  315:       LOWER = LSAME( UPLO, 'L' )
  316:       WANTZ = LSAME( JOBZ, 'V' )
  317:       ALLEIG = LSAME( RANGE, 'A' )
  318:       VALEIG = LSAME( RANGE, 'V' )
  319:       INDEIG = LSAME( RANGE, 'I' )
  320:       LQUERY = ( LWORK.EQ.-1 )
  321: *
  322:       INFO = 0
  323:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  324:          INFO = -1
  325:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  326:          INFO = -2
  327:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  328:          INFO = -3
  329:       ELSE IF( N.LT.0 ) THEN
  330:          INFO = -4
  331:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  332:          INFO = -6
  333:       ELSE
  334:          IF( VALEIG ) THEN
  335:             IF( N.GT.0 .AND. VU.LE.VL )
  336:      $         INFO = -8
  337:          ELSE IF( INDEIG ) THEN
  338:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  339:                INFO = -9
  340:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  341:                INFO = -10
  342:             END IF
  343:          END IF
  344:       END IF
  345:       IF( INFO.EQ.0 ) THEN
  346:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  347:             INFO = -15
  348:          END IF
  349:       END IF
  350: *
  351:       IF( INFO.EQ.0 ) THEN
  352:          IF( N.LE.1 ) THEN
  353:             LWKMIN = 1
  354:             WORK( 1 ) = LWKMIN
  355:          ELSE
  356:             LWKMIN = 2*N
  357:             NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  358:             NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  359:             LWKOPT = MAX( 1, ( NB + 1 )*N )
  360:             WORK( 1 ) = LWKOPT
  361:          END IF
  362: *
  363:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  364:      $      INFO = -17
  365:       END IF
  366: *
  367:       IF( INFO.NE.0 ) THEN
  368:          CALL XERBLA( 'ZHEEVX', -INFO )
  369:          RETURN
  370:       ELSE IF( LQUERY ) THEN
  371:          RETURN
  372:       END IF
  373: *
  374: *     Quick return if possible
  375: *
  376:       M = 0
  377:       IF( N.EQ.0 ) THEN
  378:          RETURN
  379:       END IF
  380: *
  381:       IF( N.EQ.1 ) THEN
  382:          IF( ALLEIG .OR. INDEIG ) THEN
  383:             M = 1
  384:             W( 1 ) = A( 1, 1 )
  385:          ELSE IF( VALEIG ) THEN
  386:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  387:      $           THEN
  388:                M = 1
  389:                W( 1 ) = A( 1, 1 )
  390:             END IF
  391:          END IF
  392:          IF( WANTZ )
  393:      $      Z( 1, 1 ) = CONE
  394:          RETURN
  395:       END IF
  396: *
  397: *     Get machine constants.
  398: *
  399:       SAFMIN = DLAMCH( 'Safe minimum' )
  400:       EPS = DLAMCH( 'Precision' )
  401:       SMLNUM = SAFMIN / EPS
  402:       BIGNUM = ONE / SMLNUM
  403:       RMIN = SQRT( SMLNUM )
  404:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  405: *
  406: *     Scale matrix to allowable range, if necessary.
  407: *
  408:       ISCALE = 0
  409:       ABSTLL = ABSTOL
  410:       IF( VALEIG ) THEN
  411:          VLL = VL
  412:          VUU = VU
  413:       END IF
  414:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
  415:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  416:          ISCALE = 1
  417:          SIGMA = RMIN / ANRM
  418:       ELSE IF( ANRM.GT.RMAX ) THEN
  419:          ISCALE = 1
  420:          SIGMA = RMAX / ANRM
  421:       END IF
  422:       IF( ISCALE.EQ.1 ) THEN
  423:          IF( LOWER ) THEN
  424:             DO 10 J = 1, N
  425:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  426:    10       CONTINUE
  427:          ELSE
  428:             DO 20 J = 1, N
  429:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  430:    20       CONTINUE
  431:          END IF
  432:          IF( ABSTOL.GT.0 )
  433:      $      ABSTLL = ABSTOL*SIGMA
  434:          IF( VALEIG ) THEN
  435:             VLL = VL*SIGMA
  436:             VUU = VU*SIGMA
  437:          END IF
  438:       END IF
  439: *
  440: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  441: *
  442:       INDD = 1
  443:       INDE = INDD + N
  444:       INDRWK = INDE + N
  445:       INDTAU = 1
  446:       INDWRK = INDTAU + N
  447:       LLWORK = LWORK - INDWRK + 1
  448:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
  449:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
  450: *
  451: *     If all eigenvalues are desired and ABSTOL is less than or equal to
  452: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
  453: *     some eigenvalue, then try DSTEBZ.
  454: *
  455:       TEST = .FALSE.
  456:       IF( INDEIG ) THEN
  457:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  458:             TEST = .TRUE.
  459:          END IF
  460:       END IF
  461:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  462:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  463:          INDEE = INDRWK + 2*N
  464:          IF( .NOT.WANTZ ) THEN
  465:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  466:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  467:          ELSE
  468:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
  469:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
  470:      $                   WORK( INDWRK ), LLWORK, IINFO )
  471:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  472:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  473:      $                   RWORK( INDRWK ), INFO )
  474:             IF( INFO.EQ.0 ) THEN
  475:                DO 30 I = 1, N
  476:                   IFAIL( I ) = 0
  477:    30          CONTINUE
  478:             END IF
  479:          END IF
  480:          IF( INFO.EQ.0 ) THEN
  481:             M = N
  482:             GO TO 40
  483:          END IF
  484:          INFO = 0
  485:       END IF
  486: *
  487: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  488: *
  489:       IF( WANTZ ) THEN
  490:          ORDER = 'B'
  491:       ELSE
  492:          ORDER = 'E'
  493:       END IF
  494:       INDIBL = 1
  495:       INDISP = INDIBL + N
  496:       INDIWK = INDISP + N
  497:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  498:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  499:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  500:      $             IWORK( INDIWK ), INFO )
  501: *
  502:       IF( WANTZ ) THEN
  503:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  504:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  505:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  506: *
  507: *        Apply unitary matrix used in reduction to tridiagonal
  508: *        form to eigenvectors returned by ZSTEIN.
  509: *
  510:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  511:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
  512:       END IF
  513: *
  514: *     If matrix was scaled, then rescale eigenvalues appropriately.
  515: *
  516:    40 CONTINUE
  517:       IF( ISCALE.EQ.1 ) THEN
  518:          IF( INFO.EQ.0 ) THEN
  519:             IMAX = M
  520:          ELSE
  521:             IMAX = INFO - 1
  522:          END IF
  523:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  524:       END IF
  525: *
  526: *     If eigenvalues are not in order, then sort them, along with
  527: *     eigenvectors.
  528: *
  529:       IF( WANTZ ) THEN
  530:          DO 60 J = 1, M - 1
  531:             I = 0
  532:             TMP1 = W( J )
  533:             DO 50 JJ = J + 1, M
  534:                IF( W( JJ ).LT.TMP1 ) THEN
  535:                   I = JJ
  536:                   TMP1 = W( JJ )
  537:                END IF
  538:    50       CONTINUE
  539: *
  540:             IF( I.NE.0 ) THEN
  541:                ITMP1 = IWORK( INDIBL+I-1 )
  542:                W( I ) = W( J )
  543:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  544:                W( J ) = TMP1
  545:                IWORK( INDIBL+J-1 ) = ITMP1
  546:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  547:                IF( INFO.NE.0 ) THEN
  548:                   ITMP1 = IFAIL( I )
  549:                   IFAIL( I ) = IFAIL( J )
  550:                   IFAIL( J ) = ITMP1
  551:                END IF
  552:             END IF
  553:    60    CONTINUE
  554:       END IF
  555: *
  556: *     Set WORK(1) to optimal complex workspace size.
  557: *
  558:       WORK( 1 ) = LWKOPT
  559: *
  560:       RETURN
  561: *
  562: *     End of ZHEEVX
  563: *
  564:       END

CVSweb interface <joel.bertrand@systella.fr>