File:  [local] / rpl / lapack / lapack / zheevx.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:47 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief <b> ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZHEEVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
   23: *                          IWORK, IFAIL, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
   28: *       DOUBLE PRECISION   ABSTOL, VL, VU
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IFAIL( * ), IWORK( * )
   32: *       DOUBLE PRECISION   RWORK( * ), W( * )
   33: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
   34: *       ..
   35: *  
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
   43: *> of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
   44: *> be selected by specifying either a range of values or a range of
   45: *> indices for the desired eigenvalues.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] JOBZ
   52: *> \verbatim
   53: *>          JOBZ is CHARACTER*1
   54: *>          = 'N':  Compute eigenvalues only;
   55: *>          = 'V':  Compute eigenvalues and eigenvectors.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] RANGE
   59: *> \verbatim
   60: *>          RANGE is CHARACTER*1
   61: *>          = 'A': all eigenvalues will be found.
   62: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
   63: *>                 will be found.
   64: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] UPLO
   68: *> \verbatim
   69: *>          UPLO is CHARACTER*1
   70: *>          = 'U':  Upper triangle of A is stored;
   71: *>          = 'L':  Lower triangle of A is stored.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] N
   75: *> \verbatim
   76: *>          N is INTEGER
   77: *>          The order of the matrix A.  N >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] A
   81: *> \verbatim
   82: *>          A is COMPLEX*16 array, dimension (LDA, N)
   83: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
   84: *>          leading N-by-N upper triangular part of A contains the
   85: *>          upper triangular part of the matrix A.  If UPLO = 'L',
   86: *>          the leading N-by-N lower triangular part of A contains
   87: *>          the lower triangular part of the matrix A.
   88: *>          On exit, the lower triangle (if UPLO='L') or the upper
   89: *>          triangle (if UPLO='U') of A, including the diagonal, is
   90: *>          destroyed.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] LDA
   94: *> \verbatim
   95: *>          LDA is INTEGER
   96: *>          The leading dimension of the array A.  LDA >= max(1,N).
   97: *> \endverbatim
   98: *>
   99: *> \param[in] VL
  100: *> \verbatim
  101: *>          VL is DOUBLE PRECISION
  102: *> \endverbatim
  103: *>
  104: *> \param[in] VU
  105: *> \verbatim
  106: *>          VU is DOUBLE PRECISION
  107: *>          If RANGE='V', the lower and upper bounds of the interval to
  108: *>          be searched for eigenvalues. VL < VU.
  109: *>          Not referenced if RANGE = 'A' or 'I'.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] IL
  113: *> \verbatim
  114: *>          IL is INTEGER
  115: *> \endverbatim
  116: *>
  117: *> \param[in] IU
  118: *> \verbatim
  119: *>          IU is INTEGER
  120: *>          If RANGE='I', the indices (in ascending order) of the
  121: *>          smallest and largest eigenvalues to be returned.
  122: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  123: *>          Not referenced if RANGE = 'A' or 'V'.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] ABSTOL
  127: *> \verbatim
  128: *>          ABSTOL is DOUBLE PRECISION
  129: *>          The absolute error tolerance for the eigenvalues.
  130: *>          An approximate eigenvalue is accepted as converged
  131: *>          when it is determined to lie in an interval [a,b]
  132: *>          of width less than or equal to
  133: *>
  134: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  135: *>
  136: *>          where EPS is the machine precision.  If ABSTOL is less than
  137: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  138: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  139: *>          by reducing A to tridiagonal form.
  140: *>
  141: *>          Eigenvalues will be computed most accurately when ABSTOL is
  142: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  143: *>          If this routine returns with INFO>0, indicating that some
  144: *>          eigenvectors did not converge, try setting ABSTOL to
  145: *>          2*DLAMCH('S').
  146: *>
  147: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  148: *>          with Guaranteed High Relative Accuracy," by Demmel and
  149: *>          Kahan, LAPACK Working Note #3.
  150: *> \endverbatim
  151: *>
  152: *> \param[out] M
  153: *> \verbatim
  154: *>          M is INTEGER
  155: *>          The total number of eigenvalues found.  0 <= M <= N.
  156: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  157: *> \endverbatim
  158: *>
  159: *> \param[out] W
  160: *> \verbatim
  161: *>          W is DOUBLE PRECISION array, dimension (N)
  162: *>          On normal exit, the first M elements contain the selected
  163: *>          eigenvalues in ascending order.
  164: *> \endverbatim
  165: *>
  166: *> \param[out] Z
  167: *> \verbatim
  168: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  169: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  170: *>          contain the orthonormal eigenvectors of the matrix A
  171: *>          corresponding to the selected eigenvalues, with the i-th
  172: *>          column of Z holding the eigenvector associated with W(i).
  173: *>          If an eigenvector fails to converge, then that column of Z
  174: *>          contains the latest approximation to the eigenvector, and the
  175: *>          index of the eigenvector is returned in IFAIL.
  176: *>          If JOBZ = 'N', then Z is not referenced.
  177: *>          Note: the user must ensure that at least max(1,M) columns are
  178: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  179: *>          is not known in advance and an upper bound must be used.
  180: *> \endverbatim
  181: *>
  182: *> \param[in] LDZ
  183: *> \verbatim
  184: *>          LDZ is INTEGER
  185: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  186: *>          JOBZ = 'V', LDZ >= max(1,N).
  187: *> \endverbatim
  188: *>
  189: *> \param[out] WORK
  190: *> \verbatim
  191: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  192: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  193: *> \endverbatim
  194: *>
  195: *> \param[in] LWORK
  196: *> \verbatim
  197: *>          LWORK is INTEGER
  198: *>          The length of the array WORK.  LWORK >= 1, when N <= 1;
  199: *>          otherwise 2*N.
  200: *>          For optimal efficiency, LWORK >= (NB+1)*N,
  201: *>          where NB is the max of the blocksize for ZHETRD and for
  202: *>          ZUNMTR as returned by ILAENV.
  203: *>
  204: *>          If LWORK = -1, then a workspace query is assumed; the routine
  205: *>          only calculates the optimal size of the WORK array, returns
  206: *>          this value as the first entry of the WORK array, and no error
  207: *>          message related to LWORK is issued by XERBLA.
  208: *> \endverbatim
  209: *>
  210: *> \param[out] RWORK
  211: *> \verbatim
  212: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
  213: *> \endverbatim
  214: *>
  215: *> \param[out] IWORK
  216: *> \verbatim
  217: *>          IWORK is INTEGER array, dimension (5*N)
  218: *> \endverbatim
  219: *>
  220: *> \param[out] IFAIL
  221: *> \verbatim
  222: *>          IFAIL is INTEGER array, dimension (N)
  223: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
  224: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  225: *>          indices of the eigenvectors that failed to converge.
  226: *>          If JOBZ = 'N', then IFAIL is not referenced.
  227: *> \endverbatim
  228: *>
  229: *> \param[out] INFO
  230: *> \verbatim
  231: *>          INFO is INTEGER
  232: *>          = 0:  successful exit
  233: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  234: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
  235: *>                Their indices are stored in array IFAIL.
  236: *> \endverbatim
  237: *
  238: *  Authors:
  239: *  ========
  240: *
  241: *> \author Univ. of Tennessee 
  242: *> \author Univ. of California Berkeley 
  243: *> \author Univ. of Colorado Denver 
  244: *> \author NAG Ltd. 
  245: *
  246: *> \date November 2011
  247: *
  248: *> \ingroup complex16HEeigen
  249: *
  250: *  =====================================================================
  251:       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  252:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
  253:      $                   IWORK, IFAIL, INFO )
  254: *
  255: *  -- LAPACK driver routine (version 3.4.0) --
  256: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  257: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  258: *     November 2011
  259: *
  260: *     .. Scalar Arguments ..
  261:       CHARACTER          JOBZ, RANGE, UPLO
  262:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
  263:       DOUBLE PRECISION   ABSTOL, VL, VU
  264: *     ..
  265: *     .. Array Arguments ..
  266:       INTEGER            IFAIL( * ), IWORK( * )
  267:       DOUBLE PRECISION   RWORK( * ), W( * )
  268:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
  269: *     ..
  270: *
  271: *  =====================================================================
  272: *
  273: *     .. Parameters ..
  274:       DOUBLE PRECISION   ZERO, ONE
  275:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  276:       COMPLEX*16         CONE
  277:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  278: *     ..
  279: *     .. Local Scalars ..
  280:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  281:      $                   WANTZ
  282:       CHARACTER          ORDER
  283:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  284:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  285:      $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
  286:      $                   NSPLIT
  287:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  288:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  289: *     ..
  290: *     .. External Functions ..
  291:       LOGICAL            LSAME
  292:       INTEGER            ILAENV
  293:       DOUBLE PRECISION   DLAMCH, ZLANHE
  294:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
  295: *     ..
  296: *     .. External Subroutines ..
  297:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  298:      $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
  299:      $                   ZUNMTR
  300: *     ..
  301: *     .. Intrinsic Functions ..
  302:       INTRINSIC          DBLE, MAX, MIN, SQRT
  303: *     ..
  304: *     .. Executable Statements ..
  305: *
  306: *     Test the input parameters.
  307: *
  308:       LOWER = LSAME( UPLO, 'L' )
  309:       WANTZ = LSAME( JOBZ, 'V' )
  310:       ALLEIG = LSAME( RANGE, 'A' )
  311:       VALEIG = LSAME( RANGE, 'V' )
  312:       INDEIG = LSAME( RANGE, 'I' )
  313:       LQUERY = ( LWORK.EQ.-1 )
  314: *
  315:       INFO = 0
  316:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  317:          INFO = -1
  318:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  319:          INFO = -2
  320:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  321:          INFO = -3
  322:       ELSE IF( N.LT.0 ) THEN
  323:          INFO = -4
  324:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  325:          INFO = -6
  326:       ELSE
  327:          IF( VALEIG ) THEN
  328:             IF( N.GT.0 .AND. VU.LE.VL )
  329:      $         INFO = -8
  330:          ELSE IF( INDEIG ) THEN
  331:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  332:                INFO = -9
  333:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  334:                INFO = -10
  335:             END IF
  336:          END IF
  337:       END IF
  338:       IF( INFO.EQ.0 ) THEN
  339:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  340:             INFO = -15
  341:          END IF
  342:       END IF
  343: *
  344:       IF( INFO.EQ.0 ) THEN
  345:          IF( N.LE.1 ) THEN
  346:             LWKMIN = 1
  347:             WORK( 1 ) = LWKMIN
  348:          ELSE
  349:             LWKMIN = 2*N
  350:             NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  351:             NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  352:             LWKOPT = MAX( 1, ( NB + 1 )*N )
  353:             WORK( 1 ) = LWKOPT
  354:          END IF
  355: *
  356:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  357:      $      INFO = -17
  358:       END IF
  359: *
  360:       IF( INFO.NE.0 ) THEN
  361:          CALL XERBLA( 'ZHEEVX', -INFO )
  362:          RETURN
  363:       ELSE IF( LQUERY ) THEN
  364:          RETURN
  365:       END IF
  366: *
  367: *     Quick return if possible
  368: *
  369:       M = 0
  370:       IF( N.EQ.0 ) THEN
  371:          RETURN
  372:       END IF
  373: *
  374:       IF( N.EQ.1 ) THEN
  375:          IF( ALLEIG .OR. INDEIG ) THEN
  376:             M = 1
  377:             W( 1 ) = A( 1, 1 )
  378:          ELSE IF( VALEIG ) THEN
  379:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  380:      $           THEN
  381:                M = 1
  382:                W( 1 ) = A( 1, 1 )
  383:             END IF
  384:          END IF
  385:          IF( WANTZ )
  386:      $      Z( 1, 1 ) = CONE
  387:          RETURN
  388:       END IF
  389: *
  390: *     Get machine constants.
  391: *
  392:       SAFMIN = DLAMCH( 'Safe minimum' )
  393:       EPS = DLAMCH( 'Precision' )
  394:       SMLNUM = SAFMIN / EPS
  395:       BIGNUM = ONE / SMLNUM
  396:       RMIN = SQRT( SMLNUM )
  397:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  398: *
  399: *     Scale matrix to allowable range, if necessary.
  400: *
  401:       ISCALE = 0
  402:       ABSTLL = ABSTOL
  403:       IF( VALEIG ) THEN
  404:          VLL = VL
  405:          VUU = VU
  406:       END IF
  407:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
  408:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  409:          ISCALE = 1
  410:          SIGMA = RMIN / ANRM
  411:       ELSE IF( ANRM.GT.RMAX ) THEN
  412:          ISCALE = 1
  413:          SIGMA = RMAX / ANRM
  414:       END IF
  415:       IF( ISCALE.EQ.1 ) THEN
  416:          IF( LOWER ) THEN
  417:             DO 10 J = 1, N
  418:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  419:    10       CONTINUE
  420:          ELSE
  421:             DO 20 J = 1, N
  422:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  423:    20       CONTINUE
  424:          END IF
  425:          IF( ABSTOL.GT.0 )
  426:      $      ABSTLL = ABSTOL*SIGMA
  427:          IF( VALEIG ) THEN
  428:             VLL = VL*SIGMA
  429:             VUU = VU*SIGMA
  430:          END IF
  431:       END IF
  432: *
  433: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  434: *
  435:       INDD = 1
  436:       INDE = INDD + N
  437:       INDRWK = INDE + N
  438:       INDTAU = 1
  439:       INDWRK = INDTAU + N
  440:       LLWORK = LWORK - INDWRK + 1
  441:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
  442:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
  443: *
  444: *     If all eigenvalues are desired and ABSTOL is less than or equal to
  445: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
  446: *     some eigenvalue, then try DSTEBZ.
  447: *
  448:       TEST = .FALSE.
  449:       IF( INDEIG ) THEN
  450:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  451:             TEST = .TRUE.
  452:          END IF
  453:       END IF
  454:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  455:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  456:          INDEE = INDRWK + 2*N
  457:          IF( .NOT.WANTZ ) THEN
  458:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  459:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  460:          ELSE
  461:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
  462:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
  463:      $                   WORK( INDWRK ), LLWORK, IINFO )
  464:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  465:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  466:      $                   RWORK( INDRWK ), INFO )
  467:             IF( INFO.EQ.0 ) THEN
  468:                DO 30 I = 1, N
  469:                   IFAIL( I ) = 0
  470:    30          CONTINUE
  471:             END IF
  472:          END IF
  473:          IF( INFO.EQ.0 ) THEN
  474:             M = N
  475:             GO TO 40
  476:          END IF
  477:          INFO = 0
  478:       END IF
  479: *
  480: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  481: *
  482:       IF( WANTZ ) THEN
  483:          ORDER = 'B'
  484:       ELSE
  485:          ORDER = 'E'
  486:       END IF
  487:       INDIBL = 1
  488:       INDISP = INDIBL + N
  489:       INDIWK = INDISP + N
  490:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  491:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  492:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  493:      $             IWORK( INDIWK ), INFO )
  494: *
  495:       IF( WANTZ ) THEN
  496:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  497:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  498:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  499: *
  500: *        Apply unitary matrix used in reduction to tridiagonal
  501: *        form to eigenvectors returned by ZSTEIN.
  502: *
  503:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  504:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
  505:       END IF
  506: *
  507: *     If matrix was scaled, then rescale eigenvalues appropriately.
  508: *
  509:    40 CONTINUE
  510:       IF( ISCALE.EQ.1 ) THEN
  511:          IF( INFO.EQ.0 ) THEN
  512:             IMAX = M
  513:          ELSE
  514:             IMAX = INFO - 1
  515:          END IF
  516:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  517:       END IF
  518: *
  519: *     If eigenvalues are not in order, then sort them, along with
  520: *     eigenvectors.
  521: *
  522:       IF( WANTZ ) THEN
  523:          DO 60 J = 1, M - 1
  524:             I = 0
  525:             TMP1 = W( J )
  526:             DO 50 JJ = J + 1, M
  527:                IF( W( JJ ).LT.TMP1 ) THEN
  528:                   I = JJ
  529:                   TMP1 = W( JJ )
  530:                END IF
  531:    50       CONTINUE
  532: *
  533:             IF( I.NE.0 ) THEN
  534:                ITMP1 = IWORK( INDIBL+I-1 )
  535:                W( I ) = W( J )
  536:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  537:                W( J ) = TMP1
  538:                IWORK( INDIBL+J-1 ) = ITMP1
  539:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  540:                IF( INFO.NE.0 ) THEN
  541:                   ITMP1 = IFAIL( I )
  542:                   IFAIL( I ) = IFAIL( J )
  543:                   IFAIL( J ) = ITMP1
  544:                END IF
  545:             END IF
  546:    60    CONTINUE
  547:       END IF
  548: *
  549: *     Set WORK(1) to optimal complex workspace size.
  550: *
  551:       WORK( 1 ) = LWKOPT
  552: *
  553:       RETURN
  554: *
  555: *     End of ZHEEVX
  556: *
  557:       END

CVSweb interface <joel.bertrand@systella.fr>