Annotation of rpl/lapack/lapack/zheevx.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHEEVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
        !            22: *                          ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
        !            23: *                          IWORK, IFAIL, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          JOBZ, RANGE, UPLO
        !            27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
        !            28: *       DOUBLE PRECISION   ABSTOL, VL, VU
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       INTEGER            IFAIL( * ), IWORK( * )
        !            32: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            33: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
        !            43: *> of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
        !            44: *> be selected by specifying either a range of values or a range of
        !            45: *> indices for the desired eigenvalues.
        !            46: *> \endverbatim
        !            47: *
        !            48: *  Arguments:
        !            49: *  ==========
        !            50: *
        !            51: *> \param[in] JOBZ
        !            52: *> \verbatim
        !            53: *>          JOBZ is CHARACTER*1
        !            54: *>          = 'N':  Compute eigenvalues only;
        !            55: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            56: *> \endverbatim
        !            57: *>
        !            58: *> \param[in] RANGE
        !            59: *> \verbatim
        !            60: *>          RANGE is CHARACTER*1
        !            61: *>          = 'A': all eigenvalues will be found.
        !            62: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            63: *>                 will be found.
        !            64: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in] UPLO
        !            68: *> \verbatim
        !            69: *>          UPLO is CHARACTER*1
        !            70: *>          = 'U':  Upper triangle of A is stored;
        !            71: *>          = 'L':  Lower triangle of A is stored.
        !            72: *> \endverbatim
        !            73: *>
        !            74: *> \param[in] N
        !            75: *> \verbatim
        !            76: *>          N is INTEGER
        !            77: *>          The order of the matrix A.  N >= 0.
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in,out] A
        !            81: *> \verbatim
        !            82: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !            83: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
        !            84: *>          leading N-by-N upper triangular part of A contains the
        !            85: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !            86: *>          the leading N-by-N lower triangular part of A contains
        !            87: *>          the lower triangular part of the matrix A.
        !            88: *>          On exit, the lower triangle (if UPLO='L') or the upper
        !            89: *>          triangle (if UPLO='U') of A, including the diagonal, is
        !            90: *>          destroyed.
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[in] LDA
        !            94: *> \verbatim
        !            95: *>          LDA is INTEGER
        !            96: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] VL
        !           100: *> \verbatim
        !           101: *>          VL is DOUBLE PRECISION
        !           102: *> \endverbatim
        !           103: *>
        !           104: *> \param[in] VU
        !           105: *> \verbatim
        !           106: *>          VU is DOUBLE PRECISION
        !           107: *>          If RANGE='V', the lower and upper bounds of the interval to
        !           108: *>          be searched for eigenvalues. VL < VU.
        !           109: *>          Not referenced if RANGE = 'A' or 'I'.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] IL
        !           113: *> \verbatim
        !           114: *>          IL is INTEGER
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in] IU
        !           118: *> \verbatim
        !           119: *>          IU is INTEGER
        !           120: *>          If RANGE='I', the indices (in ascending order) of the
        !           121: *>          smallest and largest eigenvalues to be returned.
        !           122: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           123: *>          Not referenced if RANGE = 'A' or 'V'.
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[in] ABSTOL
        !           127: *> \verbatim
        !           128: *>          ABSTOL is DOUBLE PRECISION
        !           129: *>          The absolute error tolerance for the eigenvalues.
        !           130: *>          An approximate eigenvalue is accepted as converged
        !           131: *>          when it is determined to lie in an interval [a,b]
        !           132: *>          of width less than or equal to
        !           133: *>
        !           134: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           135: *>
        !           136: *>          where EPS is the machine precision.  If ABSTOL is less than
        !           137: *>          or equal to zero, then  EPS*|T|  will be used in its place,
        !           138: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           139: *>          by reducing A to tridiagonal form.
        !           140: *>
        !           141: *>          Eigenvalues will be computed most accurately when ABSTOL is
        !           142: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
        !           143: *>          If this routine returns with INFO>0, indicating that some
        !           144: *>          eigenvectors did not converge, try setting ABSTOL to
        !           145: *>          2*DLAMCH('S').
        !           146: *>
        !           147: *>          See "Computing Small Singular Values of Bidiagonal Matrices
        !           148: *>          with Guaranteed High Relative Accuracy," by Demmel and
        !           149: *>          Kahan, LAPACK Working Note #3.
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[out] M
        !           153: *> \verbatim
        !           154: *>          M is INTEGER
        !           155: *>          The total number of eigenvalues found.  0 <= M <= N.
        !           156: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           157: *> \endverbatim
        !           158: *>
        !           159: *> \param[out] W
        !           160: *> \verbatim
        !           161: *>          W is DOUBLE PRECISION array, dimension (N)
        !           162: *>          On normal exit, the first M elements contain the selected
        !           163: *>          eigenvalues in ascending order.
        !           164: *> \endverbatim
        !           165: *>
        !           166: *> \param[out] Z
        !           167: *> \verbatim
        !           168: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
        !           169: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
        !           170: *>          contain the orthonormal eigenvectors of the matrix A
        !           171: *>          corresponding to the selected eigenvalues, with the i-th
        !           172: *>          column of Z holding the eigenvector associated with W(i).
        !           173: *>          If an eigenvector fails to converge, then that column of Z
        !           174: *>          contains the latest approximation to the eigenvector, and the
        !           175: *>          index of the eigenvector is returned in IFAIL.
        !           176: *>          If JOBZ = 'N', then Z is not referenced.
        !           177: *>          Note: the user must ensure that at least max(1,M) columns are
        !           178: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           179: *>          is not known in advance and an upper bound must be used.
        !           180: *> \endverbatim
        !           181: *>
        !           182: *> \param[in] LDZ
        !           183: *> \verbatim
        !           184: *>          LDZ is INTEGER
        !           185: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           186: *>          JOBZ = 'V', LDZ >= max(1,N).
        !           187: *> \endverbatim
        !           188: *>
        !           189: *> \param[out] WORK
        !           190: *> \verbatim
        !           191: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           192: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           193: *> \endverbatim
        !           194: *>
        !           195: *> \param[in] LWORK
        !           196: *> \verbatim
        !           197: *>          LWORK is INTEGER
        !           198: *>          The length of the array WORK.  LWORK >= 1, when N <= 1;
        !           199: *>          otherwise 2*N.
        !           200: *>          For optimal efficiency, LWORK >= (NB+1)*N,
        !           201: *>          where NB is the max of the blocksize for ZHETRD and for
        !           202: *>          ZUNMTR as returned by ILAENV.
        !           203: *>
        !           204: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           205: *>          only calculates the optimal size of the WORK array, returns
        !           206: *>          this value as the first entry of the WORK array, and no error
        !           207: *>          message related to LWORK is issued by XERBLA.
        !           208: *> \endverbatim
        !           209: *>
        !           210: *> \param[out] RWORK
        !           211: *> \verbatim
        !           212: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
        !           213: *> \endverbatim
        !           214: *>
        !           215: *> \param[out] IWORK
        !           216: *> \verbatim
        !           217: *>          IWORK is INTEGER array, dimension (5*N)
        !           218: *> \endverbatim
        !           219: *>
        !           220: *> \param[out] IFAIL
        !           221: *> \verbatim
        !           222: *>          IFAIL is INTEGER array, dimension (N)
        !           223: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
        !           224: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
        !           225: *>          indices of the eigenvectors that failed to converge.
        !           226: *>          If JOBZ = 'N', then IFAIL is not referenced.
        !           227: *> \endverbatim
        !           228: *>
        !           229: *> \param[out] INFO
        !           230: *> \verbatim
        !           231: *>          INFO is INTEGER
        !           232: *>          = 0:  successful exit
        !           233: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           234: *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
        !           235: *>                Their indices are stored in array IFAIL.
        !           236: *> \endverbatim
        !           237: *
        !           238: *  Authors:
        !           239: *  ========
        !           240: *
        !           241: *> \author Univ. of Tennessee 
        !           242: *> \author Univ. of California Berkeley 
        !           243: *> \author Univ. of Colorado Denver 
        !           244: *> \author NAG Ltd. 
        !           245: *
        !           246: *> \date November 2011
        !           247: *
        !           248: *> \ingroup complex16HEeigen
        !           249: *
        !           250: *  =====================================================================
1.1       bertrand  251:       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
                    252:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
                    253:      $                   IWORK, IFAIL, INFO )
                    254: *
1.9     ! bertrand  255: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  256: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    257: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  258: *     November 2011
1.1       bertrand  259: *
                    260: *     .. Scalar Arguments ..
                    261:       CHARACTER          JOBZ, RANGE, UPLO
                    262:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                    263:       DOUBLE PRECISION   ABSTOL, VL, VU
                    264: *     ..
                    265: *     .. Array Arguments ..
                    266:       INTEGER            IFAIL( * ), IWORK( * )
                    267:       DOUBLE PRECISION   RWORK( * ), W( * )
                    268:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
                    269: *     ..
                    270: *
                    271: *  =====================================================================
                    272: *
                    273: *     .. Parameters ..
                    274:       DOUBLE PRECISION   ZERO, ONE
                    275:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    276:       COMPLEX*16         CONE
                    277:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    278: *     ..
                    279: *     .. Local Scalars ..
                    280:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
                    281:      $                   WANTZ
                    282:       CHARACTER          ORDER
                    283:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    284:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
                    285:      $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
                    286:      $                   NSPLIT
                    287:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    288:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    289: *     ..
                    290: *     .. External Functions ..
                    291:       LOGICAL            LSAME
                    292:       INTEGER            ILAENV
                    293:       DOUBLE PRECISION   DLAMCH, ZLANHE
                    294:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
                    295: *     ..
                    296: *     .. External Subroutines ..
                    297:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
                    298:      $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
                    299:      $                   ZUNMTR
                    300: *     ..
                    301: *     .. Intrinsic Functions ..
                    302:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    303: *     ..
                    304: *     .. Executable Statements ..
                    305: *
                    306: *     Test the input parameters.
                    307: *
                    308:       LOWER = LSAME( UPLO, 'L' )
                    309:       WANTZ = LSAME( JOBZ, 'V' )
                    310:       ALLEIG = LSAME( RANGE, 'A' )
                    311:       VALEIG = LSAME( RANGE, 'V' )
                    312:       INDEIG = LSAME( RANGE, 'I' )
                    313:       LQUERY = ( LWORK.EQ.-1 )
                    314: *
                    315:       INFO = 0
                    316:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    317:          INFO = -1
                    318:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    319:          INFO = -2
                    320:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    321:          INFO = -3
                    322:       ELSE IF( N.LT.0 ) THEN
                    323:          INFO = -4
                    324:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    325:          INFO = -6
                    326:       ELSE
                    327:          IF( VALEIG ) THEN
                    328:             IF( N.GT.0 .AND. VU.LE.VL )
                    329:      $         INFO = -8
                    330:          ELSE IF( INDEIG ) THEN
                    331:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    332:                INFO = -9
                    333:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    334:                INFO = -10
                    335:             END IF
                    336:          END IF
                    337:       END IF
                    338:       IF( INFO.EQ.0 ) THEN
                    339:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    340:             INFO = -15
                    341:          END IF
                    342:       END IF
                    343: *
                    344:       IF( INFO.EQ.0 ) THEN
                    345:          IF( N.LE.1 ) THEN
                    346:             LWKMIN = 1
                    347:             WORK( 1 ) = LWKMIN
                    348:          ELSE
                    349:             LWKMIN = 2*N
                    350:             NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    351:             NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
                    352:             LWKOPT = MAX( 1, ( NB + 1 )*N )
                    353:             WORK( 1 ) = LWKOPT
                    354:          END IF
                    355: *
1.8       bertrand  356:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
1.1       bertrand  357:      $      INFO = -17
                    358:       END IF
                    359: *
                    360:       IF( INFO.NE.0 ) THEN
                    361:          CALL XERBLA( 'ZHEEVX', -INFO )
                    362:          RETURN
                    363:       ELSE IF( LQUERY ) THEN
                    364:          RETURN
                    365:       END IF
                    366: *
                    367: *     Quick return if possible
                    368: *
                    369:       M = 0
                    370:       IF( N.EQ.0 ) THEN
                    371:          RETURN
                    372:       END IF
                    373: *
                    374:       IF( N.EQ.1 ) THEN
                    375:          IF( ALLEIG .OR. INDEIG ) THEN
                    376:             M = 1
                    377:             W( 1 ) = A( 1, 1 )
                    378:          ELSE IF( VALEIG ) THEN
                    379:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
                    380:      $           THEN
                    381:                M = 1
                    382:                W( 1 ) = A( 1, 1 )
                    383:             END IF
                    384:          END IF
                    385:          IF( WANTZ )
                    386:      $      Z( 1, 1 ) = CONE
                    387:          RETURN
                    388:       END IF
                    389: *
                    390: *     Get machine constants.
                    391: *
                    392:       SAFMIN = DLAMCH( 'Safe minimum' )
                    393:       EPS = DLAMCH( 'Precision' )
                    394:       SMLNUM = SAFMIN / EPS
                    395:       BIGNUM = ONE / SMLNUM
                    396:       RMIN = SQRT( SMLNUM )
                    397:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    398: *
                    399: *     Scale matrix to allowable range, if necessary.
                    400: *
                    401:       ISCALE = 0
                    402:       ABSTLL = ABSTOL
                    403:       IF( VALEIG ) THEN
                    404:          VLL = VL
                    405:          VUU = VU
                    406:       END IF
                    407:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
                    408:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    409:          ISCALE = 1
                    410:          SIGMA = RMIN / ANRM
                    411:       ELSE IF( ANRM.GT.RMAX ) THEN
                    412:          ISCALE = 1
                    413:          SIGMA = RMAX / ANRM
                    414:       END IF
                    415:       IF( ISCALE.EQ.1 ) THEN
                    416:          IF( LOWER ) THEN
                    417:             DO 10 J = 1, N
                    418:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    419:    10       CONTINUE
                    420:          ELSE
                    421:             DO 20 J = 1, N
                    422:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
                    423:    20       CONTINUE
                    424:          END IF
                    425:          IF( ABSTOL.GT.0 )
                    426:      $      ABSTLL = ABSTOL*SIGMA
                    427:          IF( VALEIG ) THEN
                    428:             VLL = VL*SIGMA
                    429:             VUU = VU*SIGMA
                    430:          END IF
                    431:       END IF
                    432: *
                    433: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
                    434: *
                    435:       INDD = 1
                    436:       INDE = INDD + N
                    437:       INDRWK = INDE + N
                    438:       INDTAU = 1
                    439:       INDWRK = INDTAU + N
                    440:       LLWORK = LWORK - INDWRK + 1
                    441:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
                    442:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
                    443: *
                    444: *     If all eigenvalues are desired and ABSTOL is less than or equal to
                    445: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
                    446: *     some eigenvalue, then try DSTEBZ.
                    447: *
                    448:       TEST = .FALSE.
                    449:       IF( INDEIG ) THEN
                    450:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    451:             TEST = .TRUE.
                    452:          END IF
                    453:       END IF
                    454:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    455:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    456:          INDEE = INDRWK + 2*N
                    457:          IF( .NOT.WANTZ ) THEN
                    458:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    459:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    460:          ELSE
                    461:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
                    462:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
                    463:      $                   WORK( INDWRK ), LLWORK, IINFO )
                    464:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    465:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    466:      $                   RWORK( INDRWK ), INFO )
                    467:             IF( INFO.EQ.0 ) THEN
                    468:                DO 30 I = 1, N
                    469:                   IFAIL( I ) = 0
                    470:    30          CONTINUE
                    471:             END IF
                    472:          END IF
                    473:          IF( INFO.EQ.0 ) THEN
                    474:             M = N
                    475:             GO TO 40
                    476:          END IF
                    477:          INFO = 0
                    478:       END IF
                    479: *
                    480: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    481: *
                    482:       IF( WANTZ ) THEN
                    483:          ORDER = 'B'
                    484:       ELSE
                    485:          ORDER = 'E'
                    486:       END IF
                    487:       INDIBL = 1
                    488:       INDISP = INDIBL + N
                    489:       INDIWK = INDISP + N
                    490:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    491:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    492:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    493:      $             IWORK( INDIWK ), INFO )
                    494: *
                    495:       IF( WANTZ ) THEN
                    496:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    497:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    498:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    499: *
                    500: *        Apply unitary matrix used in reduction to tridiagonal
                    501: *        form to eigenvectors returned by ZSTEIN.
                    502: *
                    503:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    504:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
                    505:       END IF
                    506: *
                    507: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    508: *
                    509:    40 CONTINUE
                    510:       IF( ISCALE.EQ.1 ) THEN
                    511:          IF( INFO.EQ.0 ) THEN
                    512:             IMAX = M
                    513:          ELSE
                    514:             IMAX = INFO - 1
                    515:          END IF
                    516:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    517:       END IF
                    518: *
                    519: *     If eigenvalues are not in order, then sort them, along with
                    520: *     eigenvectors.
                    521: *
                    522:       IF( WANTZ ) THEN
                    523:          DO 60 J = 1, M - 1
                    524:             I = 0
                    525:             TMP1 = W( J )
                    526:             DO 50 JJ = J + 1, M
                    527:                IF( W( JJ ).LT.TMP1 ) THEN
                    528:                   I = JJ
                    529:                   TMP1 = W( JJ )
                    530:                END IF
                    531:    50       CONTINUE
                    532: *
                    533:             IF( I.NE.0 ) THEN
                    534:                ITMP1 = IWORK( INDIBL+I-1 )
                    535:                W( I ) = W( J )
                    536:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    537:                W( J ) = TMP1
                    538:                IWORK( INDIBL+J-1 ) = ITMP1
                    539:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    540:                IF( INFO.NE.0 ) THEN
                    541:                   ITMP1 = IFAIL( I )
                    542:                   IFAIL( I ) = IFAIL( J )
                    543:                   IFAIL( J ) = ITMP1
                    544:                END IF
                    545:             END IF
                    546:    60    CONTINUE
                    547:       END IF
                    548: *
                    549: *     Set WORK(1) to optimal complex workspace size.
                    550: *
                    551:       WORK( 1 ) = LWKOPT
                    552: *
                    553:       RETURN
                    554: *
                    555: *     End of ZHEEVX
                    556: *
                    557:       END

CVSweb interface <joel.bertrand@systella.fr>