Annotation of rpl/lapack/lapack/zheevx.f, revision 1.1.1.1

1.1       bertrand    1:       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
                      2:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
                      3:      $                   IWORK, IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IFAIL( * ), IWORK( * )
                     17:       DOUBLE PRECISION   RWORK( * ), W( * )
                     18:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
                     25: *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
                     26: *  be selected by specifying either a range of values or a range of
                     27: *  indices for the desired eigenvalues.
                     28: *
                     29: *  Arguments
                     30: *  =========
                     31: *
                     32: *  JOBZ    (input) CHARACTER*1
                     33: *          = 'N':  Compute eigenvalues only;
                     34: *          = 'V':  Compute eigenvalues and eigenvectors.
                     35: *
                     36: *  RANGE   (input) CHARACTER*1
                     37: *          = 'A': all eigenvalues will be found.
                     38: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     39: *                 will be found.
                     40: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     41: *
                     42: *  UPLO    (input) CHARACTER*1
                     43: *          = 'U':  Upper triangle of A is stored;
                     44: *          = 'L':  Lower triangle of A is stored.
                     45: *
                     46: *  N       (input) INTEGER
                     47: *          The order of the matrix A.  N >= 0.
                     48: *
                     49: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     50: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     51: *          leading N-by-N upper triangular part of A contains the
                     52: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     53: *          the leading N-by-N lower triangular part of A contains
                     54: *          the lower triangular part of the matrix A.
                     55: *          On exit, the lower triangle (if UPLO='L') or the upper
                     56: *          triangle (if UPLO='U') of A, including the diagonal, is
                     57: *          destroyed.
                     58: *
                     59: *  LDA     (input) INTEGER
                     60: *          The leading dimension of the array A.  LDA >= max(1,N).
                     61: *
                     62: *  VL      (input) DOUBLE PRECISION
                     63: *  VU      (input) DOUBLE PRECISION
                     64: *          If RANGE='V', the lower and upper bounds of the interval to
                     65: *          be searched for eigenvalues. VL < VU.
                     66: *          Not referenced if RANGE = 'A' or 'I'.
                     67: *
                     68: *  IL      (input) INTEGER
                     69: *  IU      (input) INTEGER
                     70: *          If RANGE='I', the indices (in ascending order) of the
                     71: *          smallest and largest eigenvalues to be returned.
                     72: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     73: *          Not referenced if RANGE = 'A' or 'V'.
                     74: *
                     75: *  ABSTOL  (input) DOUBLE PRECISION
                     76: *          The absolute error tolerance for the eigenvalues.
                     77: *          An approximate eigenvalue is accepted as converged
                     78: *          when it is determined to lie in an interval [a,b]
                     79: *          of width less than or equal to
                     80: *
                     81: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                     82: *
                     83: *          where EPS is the machine precision.  If ABSTOL is less than
                     84: *          or equal to zero, then  EPS*|T|  will be used in its place,
                     85: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                     86: *          by reducing A to tridiagonal form.
                     87: *
                     88: *          Eigenvalues will be computed most accurately when ABSTOL is
                     89: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                     90: *          If this routine returns with INFO>0, indicating that some
                     91: *          eigenvectors did not converge, try setting ABSTOL to
                     92: *          2*DLAMCH('S').
                     93: *
                     94: *          See "Computing Small Singular Values of Bidiagonal Matrices
                     95: *          with Guaranteed High Relative Accuracy," by Demmel and
                     96: *          Kahan, LAPACK Working Note #3.
                     97: *
                     98: *  M       (output) INTEGER
                     99: *          The total number of eigenvalues found.  0 <= M <= N.
                    100: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    101: *
                    102: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    103: *          On normal exit, the first M elements contain the selected
                    104: *          eigenvalues in ascending order.
                    105: *
                    106: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
                    107: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    108: *          contain the orthonormal eigenvectors of the matrix A
                    109: *          corresponding to the selected eigenvalues, with the i-th
                    110: *          column of Z holding the eigenvector associated with W(i).
                    111: *          If an eigenvector fails to converge, then that column of Z
                    112: *          contains the latest approximation to the eigenvector, and the
                    113: *          index of the eigenvector is returned in IFAIL.
                    114: *          If JOBZ = 'N', then Z is not referenced.
                    115: *          Note: the user must ensure that at least max(1,M) columns are
                    116: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    117: *          is not known in advance and an upper bound must be used.
                    118: *
                    119: *  LDZ     (input) INTEGER
                    120: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    121: *          JOBZ = 'V', LDZ >= max(1,N).
                    122: *
                    123: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    124: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    125: *
                    126: *  LWORK   (input) INTEGER
                    127: *          The length of the array WORK.  LWORK >= 1, when N <= 1;
                    128: *          otherwise 2*N.
                    129: *          For optimal efficiency, LWORK >= (NB+1)*N,
                    130: *          where NB is the max of the blocksize for ZHETRD and for
                    131: *          ZUNMTR as returned by ILAENV.
                    132: *
                    133: *          If LWORK = -1, then a workspace query is assumed; the routine
                    134: *          only calculates the optimal size of the WORK array, returns
                    135: *          this value as the first entry of the WORK array, and no error
                    136: *          message related to LWORK is issued by XERBLA.
                    137: *
                    138: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
                    139: *
                    140: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    141: *
                    142: *  IFAIL   (output) INTEGER array, dimension (N)
                    143: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    144: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    145: *          indices of the eigenvectors that failed to converge.
                    146: *          If JOBZ = 'N', then IFAIL is not referenced.
                    147: *
                    148: *  INFO    (output) INTEGER
                    149: *          = 0:  successful exit
                    150: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    151: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    152: *                Their indices are stored in array IFAIL.
                    153: *
                    154: *  =====================================================================
                    155: *
                    156: *     .. Parameters ..
                    157:       DOUBLE PRECISION   ZERO, ONE
                    158:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    159:       COMPLEX*16         CONE
                    160:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    161: *     ..
                    162: *     .. Local Scalars ..
                    163:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
                    164:      $                   WANTZ
                    165:       CHARACTER          ORDER
                    166:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    167:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
                    168:      $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
                    169:      $                   NSPLIT
                    170:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    171:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    172: *     ..
                    173: *     .. External Functions ..
                    174:       LOGICAL            LSAME
                    175:       INTEGER            ILAENV
                    176:       DOUBLE PRECISION   DLAMCH, ZLANHE
                    177:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
                    178: *     ..
                    179: *     .. External Subroutines ..
                    180:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
                    181:      $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
                    182:      $                   ZUNMTR
                    183: *     ..
                    184: *     .. Intrinsic Functions ..
                    185:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    186: *     ..
                    187: *     .. Executable Statements ..
                    188: *
                    189: *     Test the input parameters.
                    190: *
                    191:       LOWER = LSAME( UPLO, 'L' )
                    192:       WANTZ = LSAME( JOBZ, 'V' )
                    193:       ALLEIG = LSAME( RANGE, 'A' )
                    194:       VALEIG = LSAME( RANGE, 'V' )
                    195:       INDEIG = LSAME( RANGE, 'I' )
                    196:       LQUERY = ( LWORK.EQ.-1 )
                    197: *
                    198:       INFO = 0
                    199:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    200:          INFO = -1
                    201:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    202:          INFO = -2
                    203:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    204:          INFO = -3
                    205:       ELSE IF( N.LT.0 ) THEN
                    206:          INFO = -4
                    207:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    208:          INFO = -6
                    209:       ELSE
                    210:          IF( VALEIG ) THEN
                    211:             IF( N.GT.0 .AND. VU.LE.VL )
                    212:      $         INFO = -8
                    213:          ELSE IF( INDEIG ) THEN
                    214:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    215:                INFO = -9
                    216:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    217:                INFO = -10
                    218:             END IF
                    219:          END IF
                    220:       END IF
                    221:       IF( INFO.EQ.0 ) THEN
                    222:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    223:             INFO = -15
                    224:          END IF
                    225:       END IF
                    226: *
                    227:       IF( INFO.EQ.0 ) THEN
                    228:          IF( N.LE.1 ) THEN
                    229:             LWKMIN = 1
                    230:             WORK( 1 ) = LWKMIN
                    231:          ELSE
                    232:             LWKMIN = 2*N
                    233:             NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    234:             NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
                    235:             LWKOPT = MAX( 1, ( NB + 1 )*N )
                    236:             WORK( 1 ) = LWKOPT
                    237:          END IF
                    238: *
                    239:          IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY )
                    240:      $      INFO = -17
                    241:       END IF
                    242: *
                    243:       IF( INFO.NE.0 ) THEN
                    244:          CALL XERBLA( 'ZHEEVX', -INFO )
                    245:          RETURN
                    246:       ELSE IF( LQUERY ) THEN
                    247:          RETURN
                    248:       END IF
                    249: *
                    250: *     Quick return if possible
                    251: *
                    252:       M = 0
                    253:       IF( N.EQ.0 ) THEN
                    254:          RETURN
                    255:       END IF
                    256: *
                    257:       IF( N.EQ.1 ) THEN
                    258:          IF( ALLEIG .OR. INDEIG ) THEN
                    259:             M = 1
                    260:             W( 1 ) = A( 1, 1 )
                    261:          ELSE IF( VALEIG ) THEN
                    262:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
                    263:      $           THEN
                    264:                M = 1
                    265:                W( 1 ) = A( 1, 1 )
                    266:             END IF
                    267:          END IF
                    268:          IF( WANTZ )
                    269:      $      Z( 1, 1 ) = CONE
                    270:          RETURN
                    271:       END IF
                    272: *
                    273: *     Get machine constants.
                    274: *
                    275:       SAFMIN = DLAMCH( 'Safe minimum' )
                    276:       EPS = DLAMCH( 'Precision' )
                    277:       SMLNUM = SAFMIN / EPS
                    278:       BIGNUM = ONE / SMLNUM
                    279:       RMIN = SQRT( SMLNUM )
                    280:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    281: *
                    282: *     Scale matrix to allowable range, if necessary.
                    283: *
                    284:       ISCALE = 0
                    285:       ABSTLL = ABSTOL
                    286:       IF( VALEIG ) THEN
                    287:          VLL = VL
                    288:          VUU = VU
                    289:       END IF
                    290:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
                    291:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    292:          ISCALE = 1
                    293:          SIGMA = RMIN / ANRM
                    294:       ELSE IF( ANRM.GT.RMAX ) THEN
                    295:          ISCALE = 1
                    296:          SIGMA = RMAX / ANRM
                    297:       END IF
                    298:       IF( ISCALE.EQ.1 ) THEN
                    299:          IF( LOWER ) THEN
                    300:             DO 10 J = 1, N
                    301:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    302:    10       CONTINUE
                    303:          ELSE
                    304:             DO 20 J = 1, N
                    305:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
                    306:    20       CONTINUE
                    307:          END IF
                    308:          IF( ABSTOL.GT.0 )
                    309:      $      ABSTLL = ABSTOL*SIGMA
                    310:          IF( VALEIG ) THEN
                    311:             VLL = VL*SIGMA
                    312:             VUU = VU*SIGMA
                    313:          END IF
                    314:       END IF
                    315: *
                    316: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
                    317: *
                    318:       INDD = 1
                    319:       INDE = INDD + N
                    320:       INDRWK = INDE + N
                    321:       INDTAU = 1
                    322:       INDWRK = INDTAU + N
                    323:       LLWORK = LWORK - INDWRK + 1
                    324:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
                    325:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
                    326: *
                    327: *     If all eigenvalues are desired and ABSTOL is less than or equal to
                    328: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
                    329: *     some eigenvalue, then try DSTEBZ.
                    330: *
                    331:       TEST = .FALSE.
                    332:       IF( INDEIG ) THEN
                    333:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    334:             TEST = .TRUE.
                    335:          END IF
                    336:       END IF
                    337:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    338:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    339:          INDEE = INDRWK + 2*N
                    340:          IF( .NOT.WANTZ ) THEN
                    341:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    342:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    343:          ELSE
                    344:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
                    345:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
                    346:      $                   WORK( INDWRK ), LLWORK, IINFO )
                    347:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    348:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    349:      $                   RWORK( INDRWK ), INFO )
                    350:             IF( INFO.EQ.0 ) THEN
                    351:                DO 30 I = 1, N
                    352:                   IFAIL( I ) = 0
                    353:    30          CONTINUE
                    354:             END IF
                    355:          END IF
                    356:          IF( INFO.EQ.0 ) THEN
                    357:             M = N
                    358:             GO TO 40
                    359:          END IF
                    360:          INFO = 0
                    361:       END IF
                    362: *
                    363: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    364: *
                    365:       IF( WANTZ ) THEN
                    366:          ORDER = 'B'
                    367:       ELSE
                    368:          ORDER = 'E'
                    369:       END IF
                    370:       INDIBL = 1
                    371:       INDISP = INDIBL + N
                    372:       INDIWK = INDISP + N
                    373:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    374:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    375:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    376:      $             IWORK( INDIWK ), INFO )
                    377: *
                    378:       IF( WANTZ ) THEN
                    379:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    380:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    381:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    382: *
                    383: *        Apply unitary matrix used in reduction to tridiagonal
                    384: *        form to eigenvectors returned by ZSTEIN.
                    385: *
                    386:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    387:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
                    388:       END IF
                    389: *
                    390: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    391: *
                    392:    40 CONTINUE
                    393:       IF( ISCALE.EQ.1 ) THEN
                    394:          IF( INFO.EQ.0 ) THEN
                    395:             IMAX = M
                    396:          ELSE
                    397:             IMAX = INFO - 1
                    398:          END IF
                    399:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    400:       END IF
                    401: *
                    402: *     If eigenvalues are not in order, then sort them, along with
                    403: *     eigenvectors.
                    404: *
                    405:       IF( WANTZ ) THEN
                    406:          DO 60 J = 1, M - 1
                    407:             I = 0
                    408:             TMP1 = W( J )
                    409:             DO 50 JJ = J + 1, M
                    410:                IF( W( JJ ).LT.TMP1 ) THEN
                    411:                   I = JJ
                    412:                   TMP1 = W( JJ )
                    413:                END IF
                    414:    50       CONTINUE
                    415: *
                    416:             IF( I.NE.0 ) THEN
                    417:                ITMP1 = IWORK( INDIBL+I-1 )
                    418:                W( I ) = W( J )
                    419:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    420:                W( J ) = TMP1
                    421:                IWORK( INDIBL+J-1 ) = ITMP1
                    422:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    423:                IF( INFO.NE.0 ) THEN
                    424:                   ITMP1 = IFAIL( I )
                    425:                   IFAIL( I ) = IFAIL( J )
                    426:                   IFAIL( J ) = ITMP1
                    427:                END IF
                    428:             END IF
                    429:    60    CONTINUE
                    430:       END IF
                    431: *
                    432: *     Set WORK(1) to optimal complex workspace size.
                    433: *
                    434:       WORK( 1 ) = LWKOPT
                    435: *
                    436:       RETURN
                    437: *
                    438: *     End of ZHEEVX
                    439: *
                    440:       END

CVSweb interface <joel.bertrand@systella.fr>