Annotation of rpl/lapack/lapack/zheevx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
        !             2:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
        !             3:      $                   IWORK, IFAIL, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBZ, RANGE, UPLO
        !            12:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
        !            13:       DOUBLE PRECISION   ABSTOL, VL, VU
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IFAIL( * ), IWORK( * )
        !            17:       DOUBLE PRECISION   RWORK( * ), W( * )
        !            18:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
        !            25: *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
        !            26: *  be selected by specifying either a range of values or a range of
        !            27: *  indices for the desired eigenvalues.
        !            28: *
        !            29: *  Arguments
        !            30: *  =========
        !            31: *
        !            32: *  JOBZ    (input) CHARACTER*1
        !            33: *          = 'N':  Compute eigenvalues only;
        !            34: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            35: *
        !            36: *  RANGE   (input) CHARACTER*1
        !            37: *          = 'A': all eigenvalues will be found.
        !            38: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            39: *                 will be found.
        !            40: *          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            41: *
        !            42: *  UPLO    (input) CHARACTER*1
        !            43: *          = 'U':  Upper triangle of A is stored;
        !            44: *          = 'L':  Lower triangle of A is stored.
        !            45: *
        !            46: *  N       (input) INTEGER
        !            47: *          The order of the matrix A.  N >= 0.
        !            48: *
        !            49: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
        !            50: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
        !            51: *          leading N-by-N upper triangular part of A contains the
        !            52: *          upper triangular part of the matrix A.  If UPLO = 'L',
        !            53: *          the leading N-by-N lower triangular part of A contains
        !            54: *          the lower triangular part of the matrix A.
        !            55: *          On exit, the lower triangle (if UPLO='L') or the upper
        !            56: *          triangle (if UPLO='U') of A, including the diagonal, is
        !            57: *          destroyed.
        !            58: *
        !            59: *  LDA     (input) INTEGER
        !            60: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            61: *
        !            62: *  VL      (input) DOUBLE PRECISION
        !            63: *  VU      (input) DOUBLE PRECISION
        !            64: *          If RANGE='V', the lower and upper bounds of the interval to
        !            65: *          be searched for eigenvalues. VL < VU.
        !            66: *          Not referenced if RANGE = 'A' or 'I'.
        !            67: *
        !            68: *  IL      (input) INTEGER
        !            69: *  IU      (input) INTEGER
        !            70: *          If RANGE='I', the indices (in ascending order) of the
        !            71: *          smallest and largest eigenvalues to be returned.
        !            72: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !            73: *          Not referenced if RANGE = 'A' or 'V'.
        !            74: *
        !            75: *  ABSTOL  (input) DOUBLE PRECISION
        !            76: *          The absolute error tolerance for the eigenvalues.
        !            77: *          An approximate eigenvalue is accepted as converged
        !            78: *          when it is determined to lie in an interval [a,b]
        !            79: *          of width less than or equal to
        !            80: *
        !            81: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !            82: *
        !            83: *          where EPS is the machine precision.  If ABSTOL is less than
        !            84: *          or equal to zero, then  EPS*|T|  will be used in its place,
        !            85: *          where |T| is the 1-norm of the tridiagonal matrix obtained
        !            86: *          by reducing A to tridiagonal form.
        !            87: *
        !            88: *          Eigenvalues will be computed most accurately when ABSTOL is
        !            89: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
        !            90: *          If this routine returns with INFO>0, indicating that some
        !            91: *          eigenvectors did not converge, try setting ABSTOL to
        !            92: *          2*DLAMCH('S').
        !            93: *
        !            94: *          See "Computing Small Singular Values of Bidiagonal Matrices
        !            95: *          with Guaranteed High Relative Accuracy," by Demmel and
        !            96: *          Kahan, LAPACK Working Note #3.
        !            97: *
        !            98: *  M       (output) INTEGER
        !            99: *          The total number of eigenvalues found.  0 <= M <= N.
        !           100: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           101: *
        !           102: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !           103: *          On normal exit, the first M elements contain the selected
        !           104: *          eigenvalues in ascending order.
        !           105: *
        !           106: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
        !           107: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
        !           108: *          contain the orthonormal eigenvectors of the matrix A
        !           109: *          corresponding to the selected eigenvalues, with the i-th
        !           110: *          column of Z holding the eigenvector associated with W(i).
        !           111: *          If an eigenvector fails to converge, then that column of Z
        !           112: *          contains the latest approximation to the eigenvector, and the
        !           113: *          index of the eigenvector is returned in IFAIL.
        !           114: *          If JOBZ = 'N', then Z is not referenced.
        !           115: *          Note: the user must ensure that at least max(1,M) columns are
        !           116: *          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           117: *          is not known in advance and an upper bound must be used.
        !           118: *
        !           119: *  LDZ     (input) INTEGER
        !           120: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !           121: *          JOBZ = 'V', LDZ >= max(1,N).
        !           122: *
        !           123: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           124: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           125: *
        !           126: *  LWORK   (input) INTEGER
        !           127: *          The length of the array WORK.  LWORK >= 1, when N <= 1;
        !           128: *          otherwise 2*N.
        !           129: *          For optimal efficiency, LWORK >= (NB+1)*N,
        !           130: *          where NB is the max of the blocksize for ZHETRD and for
        !           131: *          ZUNMTR as returned by ILAENV.
        !           132: *
        !           133: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           134: *          only calculates the optimal size of the WORK array, returns
        !           135: *          this value as the first entry of the WORK array, and no error
        !           136: *          message related to LWORK is issued by XERBLA.
        !           137: *
        !           138: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
        !           139: *
        !           140: *  IWORK   (workspace) INTEGER array, dimension (5*N)
        !           141: *
        !           142: *  IFAIL   (output) INTEGER array, dimension (N)
        !           143: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
        !           144: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
        !           145: *          indices of the eigenvectors that failed to converge.
        !           146: *          If JOBZ = 'N', then IFAIL is not referenced.
        !           147: *
        !           148: *  INFO    (output) INTEGER
        !           149: *          = 0:  successful exit
        !           150: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           151: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
        !           152: *                Their indices are stored in array IFAIL.
        !           153: *
        !           154: *  =====================================================================
        !           155: *
        !           156: *     .. Parameters ..
        !           157:       DOUBLE PRECISION   ZERO, ONE
        !           158:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           159:       COMPLEX*16         CONE
        !           160:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
        !           161: *     ..
        !           162: *     .. Local Scalars ..
        !           163:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
        !           164:      $                   WANTZ
        !           165:       CHARACTER          ORDER
        !           166:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
        !           167:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
        !           168:      $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
        !           169:      $                   NSPLIT
        !           170:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
        !           171:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
        !           172: *     ..
        !           173: *     .. External Functions ..
        !           174:       LOGICAL            LSAME
        !           175:       INTEGER            ILAENV
        !           176:       DOUBLE PRECISION   DLAMCH, ZLANHE
        !           177:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
        !           178: *     ..
        !           179: *     .. External Subroutines ..
        !           180:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
        !           181:      $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
        !           182:      $                   ZUNMTR
        !           183: *     ..
        !           184: *     .. Intrinsic Functions ..
        !           185:       INTRINSIC          DBLE, MAX, MIN, SQRT
        !           186: *     ..
        !           187: *     .. Executable Statements ..
        !           188: *
        !           189: *     Test the input parameters.
        !           190: *
        !           191:       LOWER = LSAME( UPLO, 'L' )
        !           192:       WANTZ = LSAME( JOBZ, 'V' )
        !           193:       ALLEIG = LSAME( RANGE, 'A' )
        !           194:       VALEIG = LSAME( RANGE, 'V' )
        !           195:       INDEIG = LSAME( RANGE, 'I' )
        !           196:       LQUERY = ( LWORK.EQ.-1 )
        !           197: *
        !           198:       INFO = 0
        !           199:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           200:          INFO = -1
        !           201:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
        !           202:          INFO = -2
        !           203:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
        !           204:          INFO = -3
        !           205:       ELSE IF( N.LT.0 ) THEN
        !           206:          INFO = -4
        !           207:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           208:          INFO = -6
        !           209:       ELSE
        !           210:          IF( VALEIG ) THEN
        !           211:             IF( N.GT.0 .AND. VU.LE.VL )
        !           212:      $         INFO = -8
        !           213:          ELSE IF( INDEIG ) THEN
        !           214:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
        !           215:                INFO = -9
        !           216:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
        !           217:                INFO = -10
        !           218:             END IF
        !           219:          END IF
        !           220:       END IF
        !           221:       IF( INFO.EQ.0 ) THEN
        !           222:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           223:             INFO = -15
        !           224:          END IF
        !           225:       END IF
        !           226: *
        !           227:       IF( INFO.EQ.0 ) THEN
        !           228:          IF( N.LE.1 ) THEN
        !           229:             LWKMIN = 1
        !           230:             WORK( 1 ) = LWKMIN
        !           231:          ELSE
        !           232:             LWKMIN = 2*N
        !           233:             NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
        !           234:             NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
        !           235:             LWKOPT = MAX( 1, ( NB + 1 )*N )
        !           236:             WORK( 1 ) = LWKOPT
        !           237:          END IF
        !           238: *
        !           239:          IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY )
        !           240:      $      INFO = -17
        !           241:       END IF
        !           242: *
        !           243:       IF( INFO.NE.0 ) THEN
        !           244:          CALL XERBLA( 'ZHEEVX', -INFO )
        !           245:          RETURN
        !           246:       ELSE IF( LQUERY ) THEN
        !           247:          RETURN
        !           248:       END IF
        !           249: *
        !           250: *     Quick return if possible
        !           251: *
        !           252:       M = 0
        !           253:       IF( N.EQ.0 ) THEN
        !           254:          RETURN
        !           255:       END IF
        !           256: *
        !           257:       IF( N.EQ.1 ) THEN
        !           258:          IF( ALLEIG .OR. INDEIG ) THEN
        !           259:             M = 1
        !           260:             W( 1 ) = A( 1, 1 )
        !           261:          ELSE IF( VALEIG ) THEN
        !           262:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
        !           263:      $           THEN
        !           264:                M = 1
        !           265:                W( 1 ) = A( 1, 1 )
        !           266:             END IF
        !           267:          END IF
        !           268:          IF( WANTZ )
        !           269:      $      Z( 1, 1 ) = CONE
        !           270:          RETURN
        !           271:       END IF
        !           272: *
        !           273: *     Get machine constants.
        !           274: *
        !           275:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           276:       EPS = DLAMCH( 'Precision' )
        !           277:       SMLNUM = SAFMIN / EPS
        !           278:       BIGNUM = ONE / SMLNUM
        !           279:       RMIN = SQRT( SMLNUM )
        !           280:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
        !           281: *
        !           282: *     Scale matrix to allowable range, if necessary.
        !           283: *
        !           284:       ISCALE = 0
        !           285:       ABSTLL = ABSTOL
        !           286:       IF( VALEIG ) THEN
        !           287:          VLL = VL
        !           288:          VUU = VU
        !           289:       END IF
        !           290:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
        !           291:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           292:          ISCALE = 1
        !           293:          SIGMA = RMIN / ANRM
        !           294:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           295:          ISCALE = 1
        !           296:          SIGMA = RMAX / ANRM
        !           297:       END IF
        !           298:       IF( ISCALE.EQ.1 ) THEN
        !           299:          IF( LOWER ) THEN
        !           300:             DO 10 J = 1, N
        !           301:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
        !           302:    10       CONTINUE
        !           303:          ELSE
        !           304:             DO 20 J = 1, N
        !           305:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
        !           306:    20       CONTINUE
        !           307:          END IF
        !           308:          IF( ABSTOL.GT.0 )
        !           309:      $      ABSTLL = ABSTOL*SIGMA
        !           310:          IF( VALEIG ) THEN
        !           311:             VLL = VL*SIGMA
        !           312:             VUU = VU*SIGMA
        !           313:          END IF
        !           314:       END IF
        !           315: *
        !           316: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
        !           317: *
        !           318:       INDD = 1
        !           319:       INDE = INDD + N
        !           320:       INDRWK = INDE + N
        !           321:       INDTAU = 1
        !           322:       INDWRK = INDTAU + N
        !           323:       LLWORK = LWORK - INDWRK + 1
        !           324:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
        !           325:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
        !           326: *
        !           327: *     If all eigenvalues are desired and ABSTOL is less than or equal to
        !           328: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
        !           329: *     some eigenvalue, then try DSTEBZ.
        !           330: *
        !           331:       TEST = .FALSE.
        !           332:       IF( INDEIG ) THEN
        !           333:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
        !           334:             TEST = .TRUE.
        !           335:          END IF
        !           336:       END IF
        !           337:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
        !           338:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
        !           339:          INDEE = INDRWK + 2*N
        !           340:          IF( .NOT.WANTZ ) THEN
        !           341:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
        !           342:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
        !           343:          ELSE
        !           344:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
        !           345:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
        !           346:      $                   WORK( INDWRK ), LLWORK, IINFO )
        !           347:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
        !           348:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
        !           349:      $                   RWORK( INDRWK ), INFO )
        !           350:             IF( INFO.EQ.0 ) THEN
        !           351:                DO 30 I = 1, N
        !           352:                   IFAIL( I ) = 0
        !           353:    30          CONTINUE
        !           354:             END IF
        !           355:          END IF
        !           356:          IF( INFO.EQ.0 ) THEN
        !           357:             M = N
        !           358:             GO TO 40
        !           359:          END IF
        !           360:          INFO = 0
        !           361:       END IF
        !           362: *
        !           363: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
        !           364: *
        !           365:       IF( WANTZ ) THEN
        !           366:          ORDER = 'B'
        !           367:       ELSE
        !           368:          ORDER = 'E'
        !           369:       END IF
        !           370:       INDIBL = 1
        !           371:       INDISP = INDIBL + N
        !           372:       INDIWK = INDISP + N
        !           373:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
        !           374:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
        !           375:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
        !           376:      $             IWORK( INDIWK ), INFO )
        !           377: *
        !           378:       IF( WANTZ ) THEN
        !           379:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
        !           380:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
        !           381:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
        !           382: *
        !           383: *        Apply unitary matrix used in reduction to tridiagonal
        !           384: *        form to eigenvectors returned by ZSTEIN.
        !           385: *
        !           386:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
        !           387:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
        !           388:       END IF
        !           389: *
        !           390: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           391: *
        !           392:    40 CONTINUE
        !           393:       IF( ISCALE.EQ.1 ) THEN
        !           394:          IF( INFO.EQ.0 ) THEN
        !           395:             IMAX = M
        !           396:          ELSE
        !           397:             IMAX = INFO - 1
        !           398:          END IF
        !           399:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
        !           400:       END IF
        !           401: *
        !           402: *     If eigenvalues are not in order, then sort them, along with
        !           403: *     eigenvectors.
        !           404: *
        !           405:       IF( WANTZ ) THEN
        !           406:          DO 60 J = 1, M - 1
        !           407:             I = 0
        !           408:             TMP1 = W( J )
        !           409:             DO 50 JJ = J + 1, M
        !           410:                IF( W( JJ ).LT.TMP1 ) THEN
        !           411:                   I = JJ
        !           412:                   TMP1 = W( JJ )
        !           413:                END IF
        !           414:    50       CONTINUE
        !           415: *
        !           416:             IF( I.NE.0 ) THEN
        !           417:                ITMP1 = IWORK( INDIBL+I-1 )
        !           418:                W( I ) = W( J )
        !           419:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
        !           420:                W( J ) = TMP1
        !           421:                IWORK( INDIBL+J-1 ) = ITMP1
        !           422:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
        !           423:                IF( INFO.NE.0 ) THEN
        !           424:                   ITMP1 = IFAIL( I )
        !           425:                   IFAIL( I ) = IFAIL( J )
        !           426:                   IFAIL( J ) = ITMP1
        !           427:                END IF
        !           428:             END IF
        !           429:    60    CONTINUE
        !           430:       END IF
        !           431: *
        !           432: *     Set WORK(1) to optimal complex workspace size.
        !           433: *
        !           434:       WORK( 1 ) = LWKOPT
        !           435: *
        !           436:       RETURN
        !           437: *
        !           438: *     End of ZHEEVX
        !           439: *
        !           440:       END

CVSweb interface <joel.bertrand@systella.fr>