Annotation of rpl/lapack/lapack/zheevr_2stage.f, revision 1.1

1.1     ! bertrand    1: *> \brief <b> ZHEEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
        !             2: *
        !             3: *  @precisions fortran z -> s d c
        !             4: *
        !             5: *  =========== DOCUMENTATION ===========
        !             6: *
        !             7: * Online html documentation available at
        !             8: *            http://www.netlib.org/lapack/explore-html/
        !             9: *
        !            10: *> \htmlonly
        !            11: *> Download ZHEEVR_2STAGE + dependencies
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevr_2stage.f">
        !            13: *> [TGZ]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevr_2stage.f">
        !            15: *> [ZIP]</a>
        !            16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevr_2stage.f">
        !            17: *> [TXT]</a>
        !            18: *> \endhtmlonly
        !            19: *
        !            20: *  Definition:
        !            21: *  ===========
        !            22: *
        !            23: *       SUBROUTINE ZHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
        !            24: *                                 IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ,
        !            25: *                                 WORK, LWORK, RWORK, LRWORK, IWORK,
        !            26: *                                 LIWORK, INFO )
        !            27: *
        !            28: *       IMPLICIT NONE
        !            29: *
        !            30: *       .. Scalar Arguments ..
        !            31: *       CHARACTER          JOBZ, RANGE, UPLO
        !            32: *       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
        !            33: *      $                   M, N
        !            34: *       DOUBLE PRECISION   ABSTOL, VL, VU
        !            35: *       ..
        !            36: *       .. Array Arguments ..
        !            37: *       INTEGER            ISUPPZ( * ), IWORK( * )
        !            38: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            39: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
        !            40: *       ..
        !            41: *
        !            42: *
        !            43: *> \par Purpose:
        !            44: *  =============
        !            45: *>
        !            46: *> \verbatim
        !            47: *>
        !            48: *> ZHEEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors
        !            49: *> of a complex Hermitian matrix A using the 2stage technique for
        !            50: *> the reduction to tridiagonal.  Eigenvalues and eigenvectors can
        !            51: *> be selected by specifying either a range of values or a range of
        !            52: *> indices for the desired eigenvalues.
        !            53: *>
        !            54: *> ZHEEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call
        !            55: *> to ZHETRD.  Then, whenever possible, ZHEEVR_2STAGE calls ZSTEMR to compute
        !            56: *> eigenspectrum using Relatively Robust Representations.  ZSTEMR
        !            57: *> computes eigenvalues by the dqds algorithm, while orthogonal
        !            58: *> eigenvectors are computed from various "good" L D L^T representations
        !            59: *> (also known as Relatively Robust Representations). Gram-Schmidt
        !            60: *> orthogonalization is avoided as far as possible. More specifically,
        !            61: *> the various steps of the algorithm are as follows.
        !            62: *>
        !            63: *> For each unreduced block (submatrix) of T,
        !            64: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
        !            65: *>        define all the wanted eigenvalues to high relative accuracy.
        !            66: *>        This means that small relative changes in the entries of D and L
        !            67: *>        cause only small relative changes in the eigenvalues and
        !            68: *>        eigenvectors. The standard (unfactored) representation of the
        !            69: *>        tridiagonal matrix T does not have this property in general.
        !            70: *>    (b) Compute the eigenvalues to suitable accuracy.
        !            71: *>        If the eigenvectors are desired, the algorithm attains full
        !            72: *>        accuracy of the computed eigenvalues only right before
        !            73: *>        the corresponding vectors have to be computed, see steps c) and d).
        !            74: *>    (c) For each cluster of close eigenvalues, select a new
        !            75: *>        shift close to the cluster, find a new factorization, and refine
        !            76: *>        the shifted eigenvalues to suitable accuracy.
        !            77: *>    (d) For each eigenvalue with a large enough relative separation compute
        !            78: *>        the corresponding eigenvector by forming a rank revealing twisted
        !            79: *>        factorization. Go back to (c) for any clusters that remain.
        !            80: *>
        !            81: *> The desired accuracy of the output can be specified by the input
        !            82: *> parameter ABSTOL.
        !            83: *>
        !            84: *> For more details, see DSTEMR's documentation and:
        !            85: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
        !            86: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
        !            87: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
        !            88: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
        !            89: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
        !            90: *>   2004.  Also LAPACK Working Note 154.
        !            91: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
        !            92: *>   tridiagonal eigenvalue/eigenvector problem",
        !            93: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
        !            94: *>   UC Berkeley, May 1997.
        !            95: *>
        !            96: *>
        !            97: *> Note 1 : ZHEEVR_2STAGE calls ZSTEMR when the full spectrum is requested
        !            98: *> on machines which conform to the ieee-754 floating point standard.
        !            99: *> ZHEEVR_2STAGE calls DSTEBZ and ZSTEIN on non-ieee machines and
        !           100: *> when partial spectrum requests are made.
        !           101: *>
        !           102: *> Normal execution of ZSTEMR may create NaNs and infinities and
        !           103: *> hence may abort due to a floating point exception in environments
        !           104: *> which do not handle NaNs and infinities in the ieee standard default
        !           105: *> manner.
        !           106: *> \endverbatim
        !           107: *
        !           108: *  Arguments:
        !           109: *  ==========
        !           110: *
        !           111: *> \param[in] JOBZ
        !           112: *> \verbatim
        !           113: *>          JOBZ is CHARACTER*1
        !           114: *>          = 'N':  Compute eigenvalues only;
        !           115: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !           116: *>                  Not available in this release.
        !           117: *> \endverbatim
        !           118: *>
        !           119: *> \param[in] RANGE
        !           120: *> \verbatim
        !           121: *>          RANGE is CHARACTER*1
        !           122: *>          = 'A': all eigenvalues will be found.
        !           123: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !           124: *>                 will be found.
        !           125: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
        !           126: *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
        !           127: *>          ZSTEIN are called
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[in] UPLO
        !           131: *> \verbatim
        !           132: *>          UPLO is CHARACTER*1
        !           133: *>          = 'U':  Upper triangle of A is stored;
        !           134: *>          = 'L':  Lower triangle of A is stored.
        !           135: *> \endverbatim
        !           136: *>
        !           137: *> \param[in] N
        !           138: *> \verbatim
        !           139: *>          N is INTEGER
        !           140: *>          The order of the matrix A.  N >= 0.
        !           141: *> \endverbatim
        !           142: *>
        !           143: *> \param[in,out] A
        !           144: *> \verbatim
        !           145: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !           146: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
        !           147: *>          leading N-by-N upper triangular part of A contains the
        !           148: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !           149: *>          the leading N-by-N lower triangular part of A contains
        !           150: *>          the lower triangular part of the matrix A.
        !           151: *>          On exit, the lower triangle (if UPLO='L') or the upper
        !           152: *>          triangle (if UPLO='U') of A, including the diagonal, is
        !           153: *>          destroyed.
        !           154: *> \endverbatim
        !           155: *>
        !           156: *> \param[in] LDA
        !           157: *> \verbatim
        !           158: *>          LDA is INTEGER
        !           159: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           160: *> \endverbatim
        !           161: *>
        !           162: *> \param[in] VL
        !           163: *> \verbatim
        !           164: *>          VL is DOUBLE PRECISION
        !           165: *>          If RANGE='V', the lower bound of the interval to
        !           166: *>          be searched for eigenvalues. VL < VU.
        !           167: *>          Not referenced if RANGE = 'A' or 'I'.
        !           168: *> \endverbatim
        !           169: *>
        !           170: *> \param[in] VU
        !           171: *> \verbatim
        !           172: *>          VU is DOUBLE PRECISION
        !           173: *>          If RANGE='V', the upper bound of the interval to
        !           174: *>          be searched for eigenvalues. VL < VU.
        !           175: *>          Not referenced if RANGE = 'A' or 'I'.
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[in] IL
        !           179: *> \verbatim
        !           180: *>          IL is INTEGER
        !           181: *>          If RANGE='I', the index of the
        !           182: *>          smallest eigenvalue to be returned.
        !           183: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           184: *>          Not referenced if RANGE = 'A' or 'V'.
        !           185: *> \endverbatim
        !           186: *>
        !           187: *> \param[in] IU
        !           188: *> \verbatim
        !           189: *>          IU is INTEGER
        !           190: *>          If RANGE='I', the index of the
        !           191: *>          largest eigenvalue to be returned.
        !           192: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           193: *>          Not referenced if RANGE = 'A' or 'V'.
        !           194: *> \endverbatim
        !           195: *>
        !           196: *> \param[in] ABSTOL
        !           197: *> \verbatim
        !           198: *>          ABSTOL is DOUBLE PRECISION
        !           199: *>          The absolute error tolerance for the eigenvalues.
        !           200: *>          An approximate eigenvalue is accepted as converged
        !           201: *>          when it is determined to lie in an interval [a,b]
        !           202: *>          of width less than or equal to
        !           203: *>
        !           204: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           205: *>
        !           206: *>          where EPS is the machine precision.  If ABSTOL is less than
        !           207: *>          or equal to zero, then  EPS*|T|  will be used in its place,
        !           208: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           209: *>          by reducing A to tridiagonal form.
        !           210: *>
        !           211: *>          See "Computing Small Singular Values of Bidiagonal Matrices
        !           212: *>          with Guaranteed High Relative Accuracy," by Demmel and
        !           213: *>          Kahan, LAPACK Working Note #3.
        !           214: *>
        !           215: *>          If high relative accuracy is important, set ABSTOL to
        !           216: *>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
        !           217: *>          eigenvalues are computed to high relative accuracy when
        !           218: *>          possible in future releases.  The current code does not
        !           219: *>          make any guarantees about high relative accuracy, but
        !           220: *>          furutre releases will. See J. Barlow and J. Demmel,
        !           221: *>          "Computing Accurate Eigensystems of Scaled Diagonally
        !           222: *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
        !           223: *>          of which matrices define their eigenvalues to high relative
        !           224: *>          accuracy.
        !           225: *> \endverbatim
        !           226: *>
        !           227: *> \param[out] M
        !           228: *> \verbatim
        !           229: *>          M is INTEGER
        !           230: *>          The total number of eigenvalues found.  0 <= M <= N.
        !           231: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           232: *> \endverbatim
        !           233: *>
        !           234: *> \param[out] W
        !           235: *> \verbatim
        !           236: *>          W is DOUBLE PRECISION array, dimension (N)
        !           237: *>          The first M elements contain the selected eigenvalues in
        !           238: *>          ascending order.
        !           239: *> \endverbatim
        !           240: *>
        !           241: *> \param[out] Z
        !           242: *> \verbatim
        !           243: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
        !           244: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
        !           245: *>          contain the orthonormal eigenvectors of the matrix A
        !           246: *>          corresponding to the selected eigenvalues, with the i-th
        !           247: *>          column of Z holding the eigenvector associated with W(i).
        !           248: *>          If JOBZ = 'N', then Z is not referenced.
        !           249: *>          Note: the user must ensure that at least max(1,M) columns are
        !           250: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           251: *>          is not known in advance and an upper bound must be used.
        !           252: *> \endverbatim
        !           253: *>
        !           254: *> \param[in] LDZ
        !           255: *> \verbatim
        !           256: *>          LDZ is INTEGER
        !           257: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           258: *>          JOBZ = 'V', LDZ >= max(1,N).
        !           259: *> \endverbatim
        !           260: *>
        !           261: *> \param[out] ISUPPZ
        !           262: *> \verbatim
        !           263: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
        !           264: *>          The support of the eigenvectors in Z, i.e., the indices
        !           265: *>          indicating the nonzero elements in Z. The i-th eigenvector
        !           266: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
        !           267: *>          ISUPPZ( 2*i ). This is an output of ZSTEMR (tridiagonal
        !           268: *>          matrix). The support of the eigenvectors of A is typically 
        !           269: *>          1:N because of the unitary transformations applied by ZUNMTR.
        !           270: *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
        !           271: *> \endverbatim
        !           272: *>
        !           273: *> \param[out] WORK
        !           274: *> \verbatim
        !           275: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           276: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           277: *> \endverbatim
        !           278: *>
        !           279: *> \param[in] LWORK
        !           280: *> \verbatim
        !           281: *>          LWORK is INTEGER
        !           282: *>          The dimension of the array WORK.  
        !           283: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
        !           284: *>                                   LWORK = MAX(1, 26*N, dimension) where
        !           285: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + N
        !           286: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
        !           287: *>                                               + max(2*KD*KD, KD*NTHREADS) 
        !           288: *>                                               + (KD+1)*N + N
        !           289: *>                                   where KD is the blocking size of the reduction,
        !           290: *>                                   FACTOPTNB is the blocking used by the QR or LQ
        !           291: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
        !           292: *>                                   NTHREADS is the number of threads used when
        !           293: *>                                   openMP compilation is enabled, otherwise =1.
        !           294: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
        !           295: *>
        !           296: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           297: *>          only calculates the optimal sizes of the WORK, RWORK and
        !           298: *>          IWORK arrays, returns these values as the first entries of
        !           299: *>          the WORK, RWORK and IWORK arrays, and no error message
        !           300: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           301: *> \endverbatim
        !           302: *>
        !           303: *> \param[out] RWORK
        !           304: *> \verbatim
        !           305: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
        !           306: *>          On exit, if INFO = 0, RWORK(1) returns the optimal
        !           307: *>          (and minimal) LRWORK.
        !           308: *> \endverbatim
        !           309: *>
        !           310: *> \param[in] LRWORK
        !           311: *> \verbatim
        !           312: *>          LRWORK is INTEGER
        !           313: *>          The length of the array RWORK.  LRWORK >= max(1,24*N).
        !           314: *>
        !           315: *>          If LRWORK = -1, then a workspace query is assumed; the
        !           316: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           317: *>          and IWORK arrays, returns these values as the first entries
        !           318: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           319: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           320: *> \endverbatim
        !           321: *>
        !           322: *> \param[out] IWORK
        !           323: *> \verbatim
        !           324: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           325: *>          On exit, if INFO = 0, IWORK(1) returns the optimal
        !           326: *>          (and minimal) LIWORK.
        !           327: *> \endverbatim
        !           328: *>
        !           329: *> \param[in] LIWORK
        !           330: *> \verbatim
        !           331: *>          LIWORK is INTEGER
        !           332: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
        !           333: *>
        !           334: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           335: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           336: *>          and IWORK arrays, returns these values as the first entries
        !           337: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           338: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           339: *> \endverbatim
        !           340: *>
        !           341: *> \param[out] INFO
        !           342: *> \verbatim
        !           343: *>          INFO is INTEGER
        !           344: *>          = 0:  successful exit
        !           345: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           346: *>          > 0:  Internal error
        !           347: *> \endverbatim
        !           348: *
        !           349: *  Authors:
        !           350: *  ========
        !           351: *
        !           352: *> \author Univ. of Tennessee
        !           353: *> \author Univ. of California Berkeley
        !           354: *> \author Univ. of Colorado Denver
        !           355: *> \author NAG Ltd.
        !           356: *
        !           357: *> \date June 2016
        !           358: *
        !           359: *> \ingroup complex16HEeigen
        !           360: *
        !           361: *> \par Contributors:
        !           362: *  ==================
        !           363: *>
        !           364: *>     Inderjit Dhillon, IBM Almaden, USA \n
        !           365: *>     Osni Marques, LBNL/NERSC, USA \n
        !           366: *>     Ken Stanley, Computer Science Division, University of
        !           367: *>       California at Berkeley, USA \n
        !           368: *>     Jason Riedy, Computer Science Division, University of
        !           369: *>       California at Berkeley, USA \n
        !           370: *>
        !           371: *> \par Further Details:
        !           372: *  =====================
        !           373: *>
        !           374: *> \verbatim
        !           375: *>
        !           376: *>  All details about the 2stage techniques are available in:
        !           377: *>
        !           378: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
        !           379: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
        !           380: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
        !           381: *>  of 2011 International Conference for High Performance Computing,
        !           382: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
        !           383: *>  Article 8 , 11 pages.
        !           384: *>  http://doi.acm.org/10.1145/2063384.2063394
        !           385: *>
        !           386: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
        !           387: *>  An improved parallel singular value algorithm and its implementation 
        !           388: *>  for multicore hardware, In Proceedings of 2013 International Conference
        !           389: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
        !           390: *>  Denver, Colorado, USA, 2013.
        !           391: *>  Article 90, 12 pages.
        !           392: *>  http://doi.acm.org/10.1145/2503210.2503292
        !           393: *>
        !           394: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
        !           395: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
        !           396: *>  calculations based on fine-grained memory aware tasks.
        !           397: *>  International Journal of High Performance Computing Applications.
        !           398: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
        !           399: *>  http://hpc.sagepub.com/content/28/2/196 
        !           400: *>
        !           401: *> \endverbatim
        !           402: *
        !           403: *  =====================================================================
        !           404:       SUBROUTINE ZHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
        !           405:      $                          IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ,
        !           406:      $                          WORK, LWORK, RWORK, LRWORK, IWORK,
        !           407:      $                          LIWORK, INFO )
        !           408: *
        !           409:       IMPLICIT NONE
        !           410: *
        !           411: *  -- LAPACK driver routine (version 3.7.0) --
        !           412: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           413: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           414: *     June 2016
        !           415: *
        !           416: *     .. Scalar Arguments ..
        !           417:       CHARACTER          JOBZ, RANGE, UPLO
        !           418:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
        !           419:      $                   M, N
        !           420:       DOUBLE PRECISION   ABSTOL, VL, VU
        !           421: *     ..
        !           422: *     .. Array Arguments ..
        !           423:       INTEGER            ISUPPZ( * ), IWORK( * )
        !           424:       DOUBLE PRECISION   RWORK( * ), W( * )
        !           425:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
        !           426: *     ..
        !           427: *
        !           428: *  =====================================================================
        !           429: *
        !           430: *     .. Parameters ..
        !           431:       DOUBLE PRECISION   ZERO, ONE, TWO
        !           432:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
        !           433: *     ..
        !           434: *     .. Local Scalars ..
        !           435:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
        !           436:      $                   WANTZ, TRYRAC
        !           437:       CHARACTER          ORDER
        !           438:       INTEGER            I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
        !           439:      $                   INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
        !           440:      $                   INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
        !           441:      $                   LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
        !           442:      $                   LWMIN, NSPLIT, LHTRD, LWTRD, KD, IB, INDHOUS
        !           443:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
        !           444:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
        !           445: *     ..
        !           446: *     .. External Functions ..
        !           447:       LOGICAL            LSAME
        !           448:       INTEGER            ILAENV
        !           449:       DOUBLE PRECISION   DLAMCH, ZLANSY
        !           450:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
        !           451: *     ..
        !           452: *     .. External Subroutines ..
        !           453:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
        !           454:      $                   ZHETRD_2STAGE, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
        !           455: *     ..
        !           456: *     .. Intrinsic Functions ..
        !           457:       INTRINSIC          DBLE, MAX, MIN, SQRT
        !           458: *     ..
        !           459: *     .. Executable Statements ..
        !           460: *
        !           461: *     Test the input parameters.
        !           462: *
        !           463:       IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
        !           464: *
        !           465:       LOWER = LSAME( UPLO, 'L' )
        !           466:       WANTZ = LSAME( JOBZ, 'V' )
        !           467:       ALLEIG = LSAME( RANGE, 'A' )
        !           468:       VALEIG = LSAME( RANGE, 'V' )
        !           469:       INDEIG = LSAME( RANGE, 'I' )
        !           470: *
        !           471:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
        !           472:      $         ( LIWORK.EQ.-1 ) )
        !           473: *
        !           474:       KD     = ILAENV( 17, 'DSYTRD_2STAGE', JOBZ, N, -1, -1, -1 )
        !           475:       IB     = ILAENV( 18, 'DSYTRD_2STAGE', JOBZ, N, KD, -1, -1 )
        !           476:       LHTRD  = ILAENV( 19, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
        !           477:       LWTRD  = ILAENV( 20, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
        !           478:       LWMIN  = N + LHTRD + LWTRD
        !           479:       LRWMIN = MAX( 1, 24*N )
        !           480:       LIWMIN = MAX( 1, 10*N )
        !           481: *
        !           482:       INFO = 0
        !           483:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
        !           484:          INFO = -1
        !           485:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
        !           486:          INFO = -2
        !           487:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
        !           488:          INFO = -3
        !           489:       ELSE IF( N.LT.0 ) THEN
        !           490:          INFO = -4
        !           491:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           492:          INFO = -6
        !           493:       ELSE
        !           494:          IF( VALEIG ) THEN
        !           495:             IF( N.GT.0 .AND. VU.LE.VL )
        !           496:      $         INFO = -8
        !           497:          ELSE IF( INDEIG ) THEN
        !           498:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
        !           499:                INFO = -9
        !           500:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
        !           501:                INFO = -10
        !           502:             END IF
        !           503:          END IF
        !           504:       END IF
        !           505:       IF( INFO.EQ.0 ) THEN
        !           506:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           507:             INFO = -15
        !           508:          END IF
        !           509:       END IF
        !           510: *
        !           511:       IF( INFO.EQ.0 ) THEN
        !           512:          WORK( 1 )  = LWMIN
        !           513:          RWORK( 1 ) = LRWMIN
        !           514:          IWORK( 1 ) = LIWMIN
        !           515: *
        !           516:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           517:             INFO = -18
        !           518:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
        !           519:             INFO = -20
        !           520:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           521:             INFO = -22
        !           522:          END IF
        !           523:       END IF
        !           524: *
        !           525:       IF( INFO.NE.0 ) THEN
        !           526:          CALL XERBLA( 'ZHEEVR_2STAGE', -INFO )
        !           527:          RETURN
        !           528:       ELSE IF( LQUERY ) THEN
        !           529:          RETURN
        !           530:       END IF
        !           531: *
        !           532: *     Quick return if possible
        !           533: *
        !           534:       M = 0
        !           535:       IF( N.EQ.0 ) THEN
        !           536:          WORK( 1 ) = 1
        !           537:          RETURN
        !           538:       END IF
        !           539: *
        !           540:       IF( N.EQ.1 ) THEN
        !           541:          WORK( 1 ) = 2
        !           542:          IF( ALLEIG .OR. INDEIG ) THEN
        !           543:             M = 1
        !           544:             W( 1 ) = DBLE( A( 1, 1 ) )
        !           545:          ELSE
        !           546:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
        !           547:      $           THEN
        !           548:                M = 1
        !           549:                W( 1 ) = DBLE( A( 1, 1 ) )
        !           550:             END IF
        !           551:          END IF
        !           552:          IF( WANTZ ) THEN
        !           553:             Z( 1, 1 ) = ONE
        !           554:             ISUPPZ( 1 ) = 1
        !           555:             ISUPPZ( 2 ) = 1
        !           556:          END IF
        !           557:          RETURN
        !           558:       END IF
        !           559: *
        !           560: *     Get machine constants.
        !           561: *
        !           562:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           563:       EPS    = DLAMCH( 'Precision' )
        !           564:       SMLNUM = SAFMIN / EPS
        !           565:       BIGNUM = ONE / SMLNUM
        !           566:       RMIN   = SQRT( SMLNUM )
        !           567:       RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
        !           568: *
        !           569: *     Scale matrix to allowable range, if necessary.
        !           570: *
        !           571:       ISCALE = 0
        !           572:       ABSTLL = ABSTOL
        !           573:       IF (VALEIG) THEN
        !           574:          VLL = VL
        !           575:          VUU = VU
        !           576:       END IF
        !           577:       ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
        !           578:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           579:          ISCALE = 1
        !           580:          SIGMA = RMIN / ANRM
        !           581:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           582:          ISCALE = 1
        !           583:          SIGMA = RMAX / ANRM
        !           584:       END IF
        !           585:       IF( ISCALE.EQ.1 ) THEN
        !           586:          IF( LOWER ) THEN
        !           587:             DO 10 J = 1, N
        !           588:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
        !           589:    10       CONTINUE
        !           590:          ELSE
        !           591:             DO 20 J = 1, N
        !           592:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
        !           593:    20       CONTINUE
        !           594:          END IF
        !           595:          IF( ABSTOL.GT.0 )
        !           596:      $      ABSTLL = ABSTOL*SIGMA
        !           597:          IF( VALEIG ) THEN
        !           598:             VLL = VL*SIGMA
        !           599:             VUU = VU*SIGMA
        !           600:          END IF
        !           601:       END IF
        !           602: 
        !           603: *     Initialize indices into workspaces.  Note: The IWORK indices are
        !           604: *     used only if DSTERF or ZSTEMR fail.
        !           605: 
        !           606: *     WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
        !           607: *     elementary reflectors used in ZHETRD.
        !           608:       INDTAU = 1
        !           609: *     INDWK is the starting offset of the remaining complex workspace,
        !           610: *     and LLWORK is the remaining complex workspace size.
        !           611:       INDHOUS = INDTAU + N
        !           612:       INDWK   = INDHOUS + LHTRD
        !           613:       LLWORK  = LWORK - INDWK + 1
        !           614: 
        !           615: *     RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
        !           616: *     entries.
        !           617:       INDRD = 1
        !           618: *     RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
        !           619: *     tridiagonal matrix from ZHETRD.
        !           620:       INDRE = INDRD + N
        !           621: *     RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
        !           622: *     -written by ZSTEMR (the DSTERF path copies the diagonal to W).
        !           623:       INDRDD = INDRE + N
        !           624: *     RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
        !           625: *     -written while computing the eigenvalues in DSTERF and ZSTEMR.
        !           626:       INDREE = INDRDD + N
        !           627: *     INDRWK is the starting offset of the left-over real workspace, and
        !           628: *     LLRWORK is the remaining workspace size.
        !           629:       INDRWK = INDREE + N
        !           630:       LLRWORK = LRWORK - INDRWK + 1
        !           631: 
        !           632: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
        !           633: *     stores the block indices of each of the M<=N eigenvalues.
        !           634:       INDIBL = 1
        !           635: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
        !           636: *     stores the starting and finishing indices of each block.
        !           637:       INDISP = INDIBL + N
        !           638: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
        !           639: *     that corresponding to eigenvectors that fail to converge in
        !           640: *     ZSTEIN.  This information is discarded; if any fail, the driver
        !           641: *     returns INFO > 0.
        !           642:       INDIFL = INDISP + N
        !           643: *     INDIWO is the offset of the remaining integer workspace.
        !           644:       INDIWO = INDIFL + N
        !           645: 
        !           646: *
        !           647: *     Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
        !           648: *
        !           649:       CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDRD ), 
        !           650:      $                    RWORK( INDRE ), WORK( INDTAU ),
        !           651:      $                    WORK( INDHOUS ), LHTRD, 
        !           652:      $                    WORK( INDWK ), LLWORK, IINFO )
        !           653: *
        !           654: *     If all eigenvalues are desired
        !           655: *     then call DSTERF or ZSTEMR and ZUNMTR.
        !           656: *
        !           657:       TEST = .FALSE.
        !           658:       IF( INDEIG ) THEN
        !           659:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
        !           660:             TEST = .TRUE.
        !           661:          END IF
        !           662:       END IF
        !           663:       IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
        !           664:          IF( .NOT.WANTZ ) THEN
        !           665:             CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
        !           666:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
        !           667:             CALL DSTERF( N, W, RWORK( INDREE ), INFO )
        !           668:          ELSE
        !           669:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
        !           670:             CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
        !           671: *
        !           672:             IF (ABSTOL .LE. TWO*N*EPS) THEN
        !           673:                TRYRAC = .TRUE.
        !           674:             ELSE
        !           675:                TRYRAC = .FALSE.
        !           676:             END IF
        !           677:             CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
        !           678:      $                   RWORK( INDREE ), VL, VU, IL, IU, M, W,
        !           679:      $                   Z, LDZ, N, ISUPPZ, TRYRAC,
        !           680:      $                   RWORK( INDRWK ), LLRWORK,
        !           681:      $                   IWORK, LIWORK, INFO )
        !           682: *
        !           683: *           Apply unitary matrix used in reduction to tridiagonal
        !           684: *           form to eigenvectors returned by ZSTEMR.
        !           685: *
        !           686:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
        !           687:                INDWKN = INDWK
        !           688:                LLWRKN = LWORK - INDWKN + 1
        !           689:                CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
        !           690:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
        !           691:      $                      LLWRKN, IINFO )
        !           692:             END IF
        !           693:          END IF
        !           694: *
        !           695: *
        !           696:          IF( INFO.EQ.0 ) THEN
        !           697:             M = N
        !           698:             GO TO 30
        !           699:          END IF
        !           700:          INFO = 0
        !           701:       END IF
        !           702: *
        !           703: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
        !           704: *     Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
        !           705: *
        !           706:       IF( WANTZ ) THEN
        !           707:          ORDER = 'B'
        !           708:       ELSE
        !           709:          ORDER = 'E'
        !           710:       END IF
        !           711: 
        !           712:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
        !           713:      $             RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
        !           714:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
        !           715:      $             IWORK( INDIWO ), INFO )
        !           716: *
        !           717:       IF( WANTZ ) THEN
        !           718:          CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
        !           719:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
        !           720:      $                RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
        !           721:      $                INFO )
        !           722: *
        !           723: *        Apply unitary matrix used in reduction to tridiagonal
        !           724: *        form to eigenvectors returned by ZSTEIN.
        !           725: *
        !           726:          INDWKN = INDWK
        !           727:          LLWRKN = LWORK - INDWKN + 1
        !           728:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
        !           729:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
        !           730:       END IF
        !           731: *
        !           732: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           733: *
        !           734:    30 CONTINUE
        !           735:       IF( ISCALE.EQ.1 ) THEN
        !           736:          IF( INFO.EQ.0 ) THEN
        !           737:             IMAX = M
        !           738:          ELSE
        !           739:             IMAX = INFO - 1
        !           740:          END IF
        !           741:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
        !           742:       END IF
        !           743: *
        !           744: *     If eigenvalues are not in order, then sort them, along with
        !           745: *     eigenvectors.
        !           746: *
        !           747:       IF( WANTZ ) THEN
        !           748:          DO 50 J = 1, M - 1
        !           749:             I = 0
        !           750:             TMP1 = W( J )
        !           751:             DO 40 JJ = J + 1, M
        !           752:                IF( W( JJ ).LT.TMP1 ) THEN
        !           753:                   I = JJ
        !           754:                   TMP1 = W( JJ )
        !           755:                END IF
        !           756:    40       CONTINUE
        !           757: *
        !           758:             IF( I.NE.0 ) THEN
        !           759:                ITMP1 = IWORK( INDIBL+I-1 )
        !           760:                W( I ) = W( J )
        !           761:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
        !           762:                W( J ) = TMP1
        !           763:                IWORK( INDIBL+J-1 ) = ITMP1
        !           764:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
        !           765:             END IF
        !           766:    50    CONTINUE
        !           767:       END IF
        !           768: *
        !           769: *     Set WORK(1) to optimal workspace size.
        !           770: *
        !           771:       WORK( 1 )  = LWMIN
        !           772:       RWORK( 1 ) = LRWMIN
        !           773:       IWORK( 1 ) = LIWMIN
        !           774: *
        !           775:       RETURN
        !           776: *
        !           777: *     End of ZHEEVR_2STAGE
        !           778: *
        !           779:       END

CVSweb interface <joel.bertrand@systella.fr>