File:  [local] / rpl / lapack / lapack / zheevr.f
Revision 1.22: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:23 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZHEEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHEEVR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
   23: *                          RWORK, LRWORK, IWORK, LIWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
   28: *      $                   M, N
   29: *       DOUBLE PRECISION   ABSTOL, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            ISUPPZ( * ), IWORK( * )
   33: *       DOUBLE PRECISION   RWORK( * ), W( * )
   34: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
   44: *> of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
   45: *> be selected by specifying either a range of values or a range of
   46: *> indices for the desired eigenvalues.
   47: *>
   48: *> ZHEEVR first reduces the matrix A to tridiagonal form T with a call
   49: *> to ZHETRD.  Then, whenever possible, ZHEEVR calls ZSTEMR to compute
   50: *> eigenspectrum using Relatively Robust Representations.  ZSTEMR
   51: *> computes eigenvalues by the dqds algorithm, while orthogonal
   52: *> eigenvectors are computed from various "good" L D L^T representations
   53: *> (also known as Relatively Robust Representations). Gram-Schmidt
   54: *> orthogonalization is avoided as far as possible. More specifically,
   55: *> the various steps of the algorithm are as follows.
   56: *>
   57: *> For each unreduced block (submatrix) of T,
   58: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
   59: *>        define all the wanted eigenvalues to high relative accuracy.
   60: *>        This means that small relative changes in the entries of D and L
   61: *>        cause only small relative changes in the eigenvalues and
   62: *>        eigenvectors. The standard (unfactored) representation of the
   63: *>        tridiagonal matrix T does not have this property in general.
   64: *>    (b) Compute the eigenvalues to suitable accuracy.
   65: *>        If the eigenvectors are desired, the algorithm attains full
   66: *>        accuracy of the computed eigenvalues only right before
   67: *>        the corresponding vectors have to be computed, see steps c) and d).
   68: *>    (c) For each cluster of close eigenvalues, select a new
   69: *>        shift close to the cluster, find a new factorization, and refine
   70: *>        the shifted eigenvalues to suitable accuracy.
   71: *>    (d) For each eigenvalue with a large enough relative separation compute
   72: *>        the corresponding eigenvector by forming a rank revealing twisted
   73: *>        factorization. Go back to (c) for any clusters that remain.
   74: *>
   75: *> The desired accuracy of the output can be specified by the input
   76: *> parameter ABSTOL.
   77: *>
   78: *> For more details, see ZSTEMR's documentation and:
   79: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   80: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   81: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   82: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   83: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   84: *>   2004.  Also LAPACK Working Note 154.
   85: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   86: *>   tridiagonal eigenvalue/eigenvector problem",
   87: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
   88: *>   UC Berkeley, May 1997.
   89: *>
   90: *>
   91: *> Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
   92: *> on machines which conform to the ieee-754 floating point standard.
   93: *> ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
   94: *> when partial spectrum requests are made.
   95: *>
   96: *> Normal execution of ZSTEMR may create NaNs and infinities and
   97: *> hence may abort due to a floating point exception in environments
   98: *> which do not handle NaNs and infinities in the ieee standard default
   99: *> manner.
  100: *> \endverbatim
  101: *
  102: *  Arguments:
  103: *  ==========
  104: *
  105: *> \param[in] JOBZ
  106: *> \verbatim
  107: *>          JOBZ is CHARACTER*1
  108: *>          = 'N':  Compute eigenvalues only;
  109: *>          = 'V':  Compute eigenvalues and eigenvectors.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] RANGE
  113: *> \verbatim
  114: *>          RANGE is CHARACTER*1
  115: *>          = 'A': all eigenvalues will be found.
  116: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
  117: *>                 will be found.
  118: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
  119: *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
  120: *>          ZSTEIN are called
  121: *> \endverbatim
  122: *>
  123: *> \param[in] UPLO
  124: *> \verbatim
  125: *>          UPLO is CHARACTER*1
  126: *>          = 'U':  Upper triangle of A is stored;
  127: *>          = 'L':  Lower triangle of A is stored.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] N
  131: *> \verbatim
  132: *>          N is INTEGER
  133: *>          The order of the matrix A.  N >= 0.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] A
  137: *> \verbatim
  138: *>          A is COMPLEX*16 array, dimension (LDA, N)
  139: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
  140: *>          leading N-by-N upper triangular part of A contains the
  141: *>          upper triangular part of the matrix A.  If UPLO = 'L',
  142: *>          the leading N-by-N lower triangular part of A contains
  143: *>          the lower triangular part of the matrix A.
  144: *>          On exit, the lower triangle (if UPLO='L') or the upper
  145: *>          triangle (if UPLO='U') of A, including the diagonal, is
  146: *>          destroyed.
  147: *> \endverbatim
  148: *>
  149: *> \param[in] LDA
  150: *> \verbatim
  151: *>          LDA is INTEGER
  152: *>          The leading dimension of the array A.  LDA >= max(1,N).
  153: *> \endverbatim
  154: *>
  155: *> \param[in] VL
  156: *> \verbatim
  157: *>          VL is DOUBLE PRECISION
  158: *>          If RANGE='V', the lower bound of the interval to
  159: *>          be searched for eigenvalues. VL < VU.
  160: *>          Not referenced if RANGE = 'A' or 'I'.
  161: *> \endverbatim
  162: *>
  163: *> \param[in] VU
  164: *> \verbatim
  165: *>          VU is DOUBLE PRECISION
  166: *>          If RANGE='V', the upper bound of the interval to
  167: *>          be searched for eigenvalues. VL < VU.
  168: *>          Not referenced if RANGE = 'A' or 'I'.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] IL
  172: *> \verbatim
  173: *>          IL is INTEGER
  174: *>          If RANGE='I', the index of the
  175: *>          smallest eigenvalue to be returned.
  176: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  177: *>          Not referenced if RANGE = 'A' or 'V'.
  178: *> \endverbatim
  179: *>
  180: *> \param[in] IU
  181: *> \verbatim
  182: *>          IU is INTEGER
  183: *>          If RANGE='I', the index of the
  184: *>          largest eigenvalue to be returned.
  185: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  186: *>          Not referenced if RANGE = 'A' or 'V'.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] ABSTOL
  190: *> \verbatim
  191: *>          ABSTOL is DOUBLE PRECISION
  192: *>          The absolute error tolerance for the eigenvalues.
  193: *>          An approximate eigenvalue is accepted as converged
  194: *>          when it is determined to lie in an interval [a,b]
  195: *>          of width less than or equal to
  196: *>
  197: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  198: *>
  199: *>          where EPS is the machine precision.  If ABSTOL is less than
  200: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  201: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  202: *>          by reducing A to tridiagonal form.
  203: *>
  204: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  205: *>          with Guaranteed High Relative Accuracy," by Demmel and
  206: *>          Kahan, LAPACK Working Note #3.
  207: *>
  208: *>          If high relative accuracy is important, set ABSTOL to
  209: *>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
  210: *>          eigenvalues are computed to high relative accuracy when
  211: *>          possible in future releases.  The current code does not
  212: *>          make any guarantees about high relative accuracy, but
  213: *>          future releases will. See J. Barlow and J. Demmel,
  214: *>          "Computing Accurate Eigensystems of Scaled Diagonally
  215: *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
  216: *>          of which matrices define their eigenvalues to high relative
  217: *>          accuracy.
  218: *> \endverbatim
  219: *>
  220: *> \param[out] M
  221: *> \verbatim
  222: *>          M is INTEGER
  223: *>          The total number of eigenvalues found.  0 <= M <= N.
  224: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] W
  228: *> \verbatim
  229: *>          W is DOUBLE PRECISION array, dimension (N)
  230: *>          The first M elements contain the selected eigenvalues in
  231: *>          ascending order.
  232: *> \endverbatim
  233: *>
  234: *> \param[out] Z
  235: *> \verbatim
  236: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  237: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  238: *>          contain the orthonormal eigenvectors of the matrix A
  239: *>          corresponding to the selected eigenvalues, with the i-th
  240: *>          column of Z holding the eigenvector associated with W(i).
  241: *>          If JOBZ = 'N', then Z is not referenced.
  242: *>          Note: the user must ensure that at least max(1,M) columns are
  243: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  244: *>          is not known in advance and an upper bound must be used.
  245: *> \endverbatim
  246: *>
  247: *> \param[in] LDZ
  248: *> \verbatim
  249: *>          LDZ is INTEGER
  250: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  251: *>          JOBZ = 'V', LDZ >= max(1,N).
  252: *> \endverbatim
  253: *>
  254: *> \param[out] ISUPPZ
  255: *> \verbatim
  256: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  257: *>          The support of the eigenvectors in Z, i.e., the indices
  258: *>          indicating the nonzero elements in Z. The i-th eigenvector
  259: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  260: *>          ISUPPZ( 2*i ). This is an output of ZSTEMR (tridiagonal
  261: *>          matrix). The support of the eigenvectors of A is typically
  262: *>          1:N because of the unitary transformations applied by ZUNMTR.
  263: *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  264: *> \endverbatim
  265: *>
  266: *> \param[out] WORK
  267: *> \verbatim
  268: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  269: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  270: *> \endverbatim
  271: *>
  272: *> \param[in] LWORK
  273: *> \verbatim
  274: *>          LWORK is INTEGER
  275: *>          The length of the array WORK.  LWORK >= max(1,2*N).
  276: *>          For optimal efficiency, LWORK >= (NB+1)*N,
  277: *>          where NB is the max of the blocksize for ZHETRD and for
  278: *>          ZUNMTR as returned by ILAENV.
  279: *>
  280: *>          If LWORK = -1, then a workspace query is assumed; the routine
  281: *>          only calculates the optimal sizes of the WORK, RWORK and
  282: *>          IWORK arrays, returns these values as the first entries of
  283: *>          the WORK, RWORK and IWORK arrays, and no error message
  284: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  285: *> \endverbatim
  286: *>
  287: *> \param[out] RWORK
  288: *> \verbatim
  289: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  290: *>          On exit, if INFO = 0, RWORK(1) returns the optimal
  291: *>          (and minimal) LRWORK.
  292: *> \endverbatim
  293: *>
  294: *> \param[in] LRWORK
  295: *> \verbatim
  296: *>          LRWORK is INTEGER
  297: *>          The length of the array RWORK.  LRWORK >= max(1,24*N).
  298: *>
  299: *>          If LRWORK = -1, then a workspace query is assumed; the
  300: *>          routine only calculates the optimal sizes of the WORK, RWORK
  301: *>          and IWORK arrays, returns these values as the first entries
  302: *>          of the WORK, RWORK and IWORK arrays, and no error message
  303: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  304: *> \endverbatim
  305: *>
  306: *> \param[out] IWORK
  307: *> \verbatim
  308: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  309: *>          On exit, if INFO = 0, IWORK(1) returns the optimal
  310: *>          (and minimal) LIWORK.
  311: *> \endverbatim
  312: *>
  313: *> \param[in] LIWORK
  314: *> \verbatim
  315: *>          LIWORK is INTEGER
  316: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
  317: *>
  318: *>          If LIWORK = -1, then a workspace query is assumed; the
  319: *>          routine only calculates the optimal sizes of the WORK, RWORK
  320: *>          and IWORK arrays, returns these values as the first entries
  321: *>          of the WORK, RWORK and IWORK arrays, and no error message
  322: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  323: *> \endverbatim
  324: *>
  325: *> \param[out] INFO
  326: *> \verbatim
  327: *>          INFO is INTEGER
  328: *>          = 0:  successful exit
  329: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  330: *>          > 0:  Internal error
  331: *> \endverbatim
  332: *
  333: *  Authors:
  334: *  ========
  335: *
  336: *> \author Univ. of Tennessee
  337: *> \author Univ. of California Berkeley
  338: *> \author Univ. of Colorado Denver
  339: *> \author NAG Ltd.
  340: *
  341: *> \ingroup complex16HEeigen
  342: *
  343: *> \par Contributors:
  344: *  ==================
  345: *>
  346: *>     Inderjit Dhillon, IBM Almaden, USA \n
  347: *>     Osni Marques, LBNL/NERSC, USA \n
  348: *>     Ken Stanley, Computer Science Division, University of
  349: *>       California at Berkeley, USA \n
  350: *>     Jason Riedy, Computer Science Division, University of
  351: *>       California at Berkeley, USA \n
  352: *>
  353: *  =====================================================================
  354:       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  355:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
  356:      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
  357: *
  358: *  -- LAPACK driver routine --
  359: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  360: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  361: *
  362: *     .. Scalar Arguments ..
  363:       CHARACTER          JOBZ, RANGE, UPLO
  364:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
  365:      $                   M, N
  366:       DOUBLE PRECISION   ABSTOL, VL, VU
  367: *     ..
  368: *     .. Array Arguments ..
  369:       INTEGER            ISUPPZ( * ), IWORK( * )
  370:       DOUBLE PRECISION   RWORK( * ), W( * )
  371:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
  372: *     ..
  373: *
  374: *  =====================================================================
  375: *
  376: *     .. Parameters ..
  377:       DOUBLE PRECISION   ZERO, ONE, TWO
  378:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  379: *     ..
  380: *     .. Local Scalars ..
  381:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  382:      $                   WANTZ, TRYRAC
  383:       CHARACTER          ORDER
  384:       INTEGER            I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
  385:      $                   INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
  386:      $                   INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
  387:      $                   LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
  388:      $                   LWKOPT, LWMIN, NB, NSPLIT
  389:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  390:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  391: *     ..
  392: *     .. External Functions ..
  393:       LOGICAL            LSAME
  394:       INTEGER            ILAENV
  395:       DOUBLE PRECISION   DLAMCH, ZLANSY
  396:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
  397: *     ..
  398: *     .. External Subroutines ..
  399:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  400:      $                   ZHETRD, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
  401: *     ..
  402: *     .. Intrinsic Functions ..
  403:       INTRINSIC          DBLE, MAX, MIN, SQRT
  404: *     ..
  405: *     .. Executable Statements ..
  406: *
  407: *     Test the input parameters.
  408: *
  409:       IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
  410: *
  411:       LOWER = LSAME( UPLO, 'L' )
  412:       WANTZ = LSAME( JOBZ, 'V' )
  413:       ALLEIG = LSAME( RANGE, 'A' )
  414:       VALEIG = LSAME( RANGE, 'V' )
  415:       INDEIG = LSAME( RANGE, 'I' )
  416: *
  417:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
  418:      $         ( LIWORK.EQ.-1 ) )
  419: *
  420:       LRWMIN = MAX( 1, 24*N )
  421:       LIWMIN = MAX( 1, 10*N )
  422:       LWMIN = MAX( 1, 2*N )
  423: *
  424:       INFO = 0
  425:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  426:          INFO = -1
  427:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  428:          INFO = -2
  429:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  430:          INFO = -3
  431:       ELSE IF( N.LT.0 ) THEN
  432:          INFO = -4
  433:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  434:          INFO = -6
  435:       ELSE
  436:          IF( VALEIG ) THEN
  437:             IF( N.GT.0 .AND. VU.LE.VL )
  438:      $         INFO = -8
  439:          ELSE IF( INDEIG ) THEN
  440:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  441:                INFO = -9
  442:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  443:                INFO = -10
  444:             END IF
  445:          END IF
  446:       END IF
  447:       IF( INFO.EQ.0 ) THEN
  448:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  449:             INFO = -15
  450:          END IF
  451:       END IF
  452: *
  453:       IF( INFO.EQ.0 ) THEN
  454:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  455:          NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  456:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
  457:          WORK( 1 ) = LWKOPT
  458:          RWORK( 1 ) = LRWMIN
  459:          IWORK( 1 ) = LIWMIN
  460: *
  461:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  462:             INFO = -18
  463:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  464:             INFO = -20
  465:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  466:             INFO = -22
  467:          END IF
  468:       END IF
  469: *
  470:       IF( INFO.NE.0 ) THEN
  471:          CALL XERBLA( 'ZHEEVR', -INFO )
  472:          RETURN
  473:       ELSE IF( LQUERY ) THEN
  474:          RETURN
  475:       END IF
  476: *
  477: *     Quick return if possible
  478: *
  479:       M = 0
  480:       IF( N.EQ.0 ) THEN
  481:          WORK( 1 ) = 1
  482:          RETURN
  483:       END IF
  484: *
  485:       IF( N.EQ.1 ) THEN
  486:          WORK( 1 ) = 2
  487:          IF( ALLEIG .OR. INDEIG ) THEN
  488:             M = 1
  489:             W( 1 ) = DBLE( A( 1, 1 ) )
  490:          ELSE
  491:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  492:      $           THEN
  493:                M = 1
  494:                W( 1 ) = DBLE( A( 1, 1 ) )
  495:             END IF
  496:          END IF
  497:          IF( WANTZ ) THEN
  498:             Z( 1, 1 ) = ONE
  499:             ISUPPZ( 1 ) = 1
  500:             ISUPPZ( 2 ) = 1
  501:          END IF
  502:          RETURN
  503:       END IF
  504: *
  505: *     Get machine constants.
  506: *
  507:       SAFMIN = DLAMCH( 'Safe minimum' )
  508:       EPS = DLAMCH( 'Precision' )
  509:       SMLNUM = SAFMIN / EPS
  510:       BIGNUM = ONE / SMLNUM
  511:       RMIN = SQRT( SMLNUM )
  512:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  513: *
  514: *     Scale matrix to allowable range, if necessary.
  515: *
  516:       ISCALE = 0
  517:       ABSTLL = ABSTOL
  518:       IF (VALEIG) THEN
  519:          VLL = VL
  520:          VUU = VU
  521:       END IF
  522:       ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
  523:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  524:          ISCALE = 1
  525:          SIGMA = RMIN / ANRM
  526:       ELSE IF( ANRM.GT.RMAX ) THEN
  527:          ISCALE = 1
  528:          SIGMA = RMAX / ANRM
  529:       END IF
  530:       IF( ISCALE.EQ.1 ) THEN
  531:          IF( LOWER ) THEN
  532:             DO 10 J = 1, N
  533:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  534:    10       CONTINUE
  535:          ELSE
  536:             DO 20 J = 1, N
  537:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  538:    20       CONTINUE
  539:          END IF
  540:          IF( ABSTOL.GT.0 )
  541:      $      ABSTLL = ABSTOL*SIGMA
  542:          IF( VALEIG ) THEN
  543:             VLL = VL*SIGMA
  544:             VUU = VU*SIGMA
  545:          END IF
  546:       END IF
  547: 
  548: *     Initialize indices into workspaces.  Note: The IWORK indices are
  549: *     used only if DSTERF or ZSTEMR fail.
  550: 
  551: *     WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
  552: *     elementary reflectors used in ZHETRD.
  553:       INDTAU = 1
  554: *     INDWK is the starting offset of the remaining complex workspace,
  555: *     and LLWORK is the remaining complex workspace size.
  556:       INDWK = INDTAU + N
  557:       LLWORK = LWORK - INDWK + 1
  558: 
  559: *     RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
  560: *     entries.
  561:       INDRD = 1
  562: *     RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
  563: *     tridiagonal matrix from ZHETRD.
  564:       INDRE = INDRD + N
  565: *     RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
  566: *     -written by ZSTEMR (the DSTERF path copies the diagonal to W).
  567:       INDRDD = INDRE + N
  568: *     RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
  569: *     -written while computing the eigenvalues in DSTERF and ZSTEMR.
  570:       INDREE = INDRDD + N
  571: *     INDRWK is the starting offset of the left-over real workspace, and
  572: *     LLRWORK is the remaining workspace size.
  573:       INDRWK = INDREE + N
  574:       LLRWORK = LRWORK - INDRWK + 1
  575: 
  576: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  577: *     stores the block indices of each of the M<=N eigenvalues.
  578:       INDIBL = 1
  579: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  580: *     stores the starting and finishing indices of each block.
  581:       INDISP = INDIBL + N
  582: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  583: *     that corresponding to eigenvectors that fail to converge in
  584: *     DSTEIN.  This information is discarded; if any fail, the driver
  585: *     returns INFO > 0.
  586:       INDIFL = INDISP + N
  587: *     INDIWO is the offset of the remaining integer workspace.
  588:       INDIWO = INDIFL + N
  589: 
  590: *
  591: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  592: *
  593:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
  594:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
  595: *
  596: *     If all eigenvalues are desired
  597: *     then call DSTERF or ZSTEMR and ZUNMTR.
  598: *
  599:       TEST = .FALSE.
  600:       IF( INDEIG ) THEN
  601:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  602:             TEST = .TRUE.
  603:          END IF
  604:       END IF
  605:       IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
  606:          IF( .NOT.WANTZ ) THEN
  607:             CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
  608:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  609:             CALL DSTERF( N, W, RWORK( INDREE ), INFO )
  610:          ELSE
  611:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  612:             CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
  613: *
  614:             IF (ABSTOL .LE. TWO*N*EPS) THEN
  615:                TRYRAC = .TRUE.
  616:             ELSE
  617:                TRYRAC = .FALSE.
  618:             END IF
  619:             CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
  620:      $                   RWORK( INDREE ), VL, VU, IL, IU, M, W,
  621:      $                   Z, LDZ, N, ISUPPZ, TRYRAC,
  622:      $                   RWORK( INDRWK ), LLRWORK,
  623:      $                   IWORK, LIWORK, INFO )
  624: *
  625: *           Apply unitary matrix used in reduction to tridiagonal
  626: *           form to eigenvectors returned by ZSTEMR.
  627: *
  628:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
  629:                INDWKN = INDWK
  630:                LLWRKN = LWORK - INDWKN + 1
  631:                CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
  632:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
  633:      $                      LLWRKN, IINFO )
  634:             END IF
  635:          END IF
  636: *
  637: *
  638:          IF( INFO.EQ.0 ) THEN
  639:             M = N
  640:             GO TO 30
  641:          END IF
  642:          INFO = 0
  643:       END IF
  644: *
  645: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  646: *     Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
  647: *
  648:       IF( WANTZ ) THEN
  649:          ORDER = 'B'
  650:       ELSE
  651:          ORDER = 'E'
  652:       END IF
  653: 
  654:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  655:      $             RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
  656:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  657:      $             IWORK( INDIWO ), INFO )
  658: *
  659:       IF( WANTZ ) THEN
  660:          CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
  661:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  662:      $                RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
  663:      $                INFO )
  664: *
  665: *        Apply unitary matrix used in reduction to tridiagonal
  666: *        form to eigenvectors returned by ZSTEIN.
  667: *
  668:          INDWKN = INDWK
  669:          LLWRKN = LWORK - INDWKN + 1
  670:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  671:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  672:       END IF
  673: *
  674: *     If matrix was scaled, then rescale eigenvalues appropriately.
  675: *
  676:    30 CONTINUE
  677:       IF( ISCALE.EQ.1 ) THEN
  678:          IF( INFO.EQ.0 ) THEN
  679:             IMAX = M
  680:          ELSE
  681:             IMAX = INFO - 1
  682:          END IF
  683:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  684:       END IF
  685: *
  686: *     If eigenvalues are not in order, then sort them, along with
  687: *     eigenvectors.
  688: *
  689:       IF( WANTZ ) THEN
  690:          DO 50 J = 1, M - 1
  691:             I = 0
  692:             TMP1 = W( J )
  693:             DO 40 JJ = J + 1, M
  694:                IF( W( JJ ).LT.TMP1 ) THEN
  695:                   I = JJ
  696:                   TMP1 = W( JJ )
  697:                END IF
  698:    40       CONTINUE
  699: *
  700:             IF( I.NE.0 ) THEN
  701:                ITMP1 = IWORK( INDIBL+I-1 )
  702:                W( I ) = W( J )
  703:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  704:                W( J ) = TMP1
  705:                IWORK( INDIBL+J-1 ) = ITMP1
  706:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  707:             END IF
  708:    50    CONTINUE
  709:       END IF
  710: *
  711: *     Set WORK(1) to optimal workspace size.
  712: *
  713:       WORK( 1 ) = LWKOPT
  714:       RWORK( 1 ) = LRWMIN
  715:       IWORK( 1 ) = LIWMIN
  716: *
  717:       RETURN
  718: *
  719: *     End of ZHEEVR
  720: *
  721:       END

CVSweb interface <joel.bertrand@systella.fr>