File:  [local] / rpl / lapack / lapack / zheevr.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:34:49 2016 UTC (7 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_25, HEAD
Cohérence Lapack.

    1: *> \brief <b> ZHEEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZHEEVR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
   23: *                          RWORK, LRWORK, IWORK, LIWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
   28: *      $                   M, N
   29: *       DOUBLE PRECISION   ABSTOL, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            ISUPPZ( * ), IWORK( * )
   33: *       DOUBLE PRECISION   RWORK( * ), W( * )
   34: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
   44: *> of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
   45: *> be selected by specifying either a range of values or a range of
   46: *> indices for the desired eigenvalues.
   47: *>
   48: *> ZHEEVR first reduces the matrix A to tridiagonal form T with a call
   49: *> to ZHETRD.  Then, whenever possible, ZHEEVR calls ZSTEMR to compute
   50: *> eigenspectrum using Relatively Robust Representations.  ZSTEMR
   51: *> computes eigenvalues by the dqds algorithm, while orthogonal
   52: *> eigenvectors are computed from various "good" L D L^T representations
   53: *> (also known as Relatively Robust Representations). Gram-Schmidt
   54: *> orthogonalization is avoided as far as possible. More specifically,
   55: *> the various steps of the algorithm are as follows.
   56: *>
   57: *> For each unreduced block (submatrix) of T,
   58: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
   59: *>        define all the wanted eigenvalues to high relative accuracy.
   60: *>        This means that small relative changes in the entries of D and L
   61: *>        cause only small relative changes in the eigenvalues and
   62: *>        eigenvectors. The standard (unfactored) representation of the
   63: *>        tridiagonal matrix T does not have this property in general.
   64: *>    (b) Compute the eigenvalues to suitable accuracy.
   65: *>        If the eigenvectors are desired, the algorithm attains full
   66: *>        accuracy of the computed eigenvalues only right before
   67: *>        the corresponding vectors have to be computed, see steps c) and d).
   68: *>    (c) For each cluster of close eigenvalues, select a new
   69: *>        shift close to the cluster, find a new factorization, and refine
   70: *>        the shifted eigenvalues to suitable accuracy.
   71: *>    (d) For each eigenvalue with a large enough relative separation compute
   72: *>        the corresponding eigenvector by forming a rank revealing twisted
   73: *>        factorization. Go back to (c) for any clusters that remain.
   74: *>
   75: *> The desired accuracy of the output can be specified by the input
   76: *> parameter ABSTOL.
   77: *>
   78: *> For more details, see DSTEMR's documentation and:
   79: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   80: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   81: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   82: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   83: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   84: *>   2004.  Also LAPACK Working Note 154.
   85: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   86: *>   tridiagonal eigenvalue/eigenvector problem",
   87: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
   88: *>   UC Berkeley, May 1997.
   89: *>
   90: *>
   91: *> Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
   92: *> on machines which conform to the ieee-754 floating point standard.
   93: *> ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
   94: *> when partial spectrum requests are made.
   95: *>
   96: *> Normal execution of ZSTEMR may create NaNs and infinities and
   97: *> hence may abort due to a floating point exception in environments
   98: *> which do not handle NaNs and infinities in the ieee standard default
   99: *> manner.
  100: *> \endverbatim
  101: *
  102: *  Arguments:
  103: *  ==========
  104: *
  105: *> \param[in] JOBZ
  106: *> \verbatim
  107: *>          JOBZ is CHARACTER*1
  108: *>          = 'N':  Compute eigenvalues only;
  109: *>          = 'V':  Compute eigenvalues and eigenvectors.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] RANGE
  113: *> \verbatim
  114: *>          RANGE is CHARACTER*1
  115: *>          = 'A': all eigenvalues will be found.
  116: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
  117: *>                 will be found.
  118: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
  119: *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
  120: *>          ZSTEIN are called
  121: *> \endverbatim
  122: *>
  123: *> \param[in] UPLO
  124: *> \verbatim
  125: *>          UPLO is CHARACTER*1
  126: *>          = 'U':  Upper triangle of A is stored;
  127: *>          = 'L':  Lower triangle of A is stored.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] N
  131: *> \verbatim
  132: *>          N is INTEGER
  133: *>          The order of the matrix A.  N >= 0.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] A
  137: *> \verbatim
  138: *>          A is COMPLEX*16 array, dimension (LDA, N)
  139: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
  140: *>          leading N-by-N upper triangular part of A contains the
  141: *>          upper triangular part of the matrix A.  If UPLO = 'L',
  142: *>          the leading N-by-N lower triangular part of A contains
  143: *>          the lower triangular part of the matrix A.
  144: *>          On exit, the lower triangle (if UPLO='L') or the upper
  145: *>          triangle (if UPLO='U') of A, including the diagonal, is
  146: *>          destroyed.
  147: *> \endverbatim
  148: *>
  149: *> \param[in] LDA
  150: *> \verbatim
  151: *>          LDA is INTEGER
  152: *>          The leading dimension of the array A.  LDA >= max(1,N).
  153: *> \endverbatim
  154: *>
  155: *> \param[in] VL
  156: *> \verbatim
  157: *>          VL is DOUBLE PRECISION
  158: *>          If RANGE='V', the lower bound of the interval to
  159: *>          be searched for eigenvalues. VL < VU.
  160: *>          Not referenced if RANGE = 'A' or 'I'.
  161: *> \endverbatim
  162: *>
  163: *> \param[in] VU
  164: *> \verbatim
  165: *>          VU is DOUBLE PRECISION
  166: *>          If RANGE='V', the upper bound of the interval to
  167: *>          be searched for eigenvalues. VL < VU.
  168: *>          Not referenced if RANGE = 'A' or 'I'.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] IL
  172: *> \verbatim
  173: *>          IL is INTEGER
  174: *>          If RANGE='I', the index of the
  175: *>          smallest eigenvalue to be returned.
  176: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  177: *>          Not referenced if RANGE = 'A' or 'V'.
  178: *> \endverbatim
  179: *>
  180: *> \param[in] IU
  181: *> \verbatim
  182: *>          IU is INTEGER
  183: *>          If RANGE='I', the index of the
  184: *>          largest eigenvalue to be returned.
  185: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  186: *>          Not referenced if RANGE = 'A' or 'V'.
  187: *> \endverbatim
  188: *>
  189: *> \param[in] ABSTOL
  190: *> \verbatim
  191: *>          ABSTOL is DOUBLE PRECISION
  192: *>          The absolute error tolerance for the eigenvalues.
  193: *>          An approximate eigenvalue is accepted as converged
  194: *>          when it is determined to lie in an interval [a,b]
  195: *>          of width less than or equal to
  196: *>
  197: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  198: *>
  199: *>          where EPS is the machine precision.  If ABSTOL is less than
  200: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  201: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  202: *>          by reducing A to tridiagonal form.
  203: *>
  204: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  205: *>          with Guaranteed High Relative Accuracy," by Demmel and
  206: *>          Kahan, LAPACK Working Note #3.
  207: *>
  208: *>          If high relative accuracy is important, set ABSTOL to
  209: *>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
  210: *>          eigenvalues are computed to high relative accuracy when
  211: *>          possible in future releases.  The current code does not
  212: *>          make any guarantees about high relative accuracy, but
  213: *>          furutre releases will. See J. Barlow and J. Demmel,
  214: *>          "Computing Accurate Eigensystems of Scaled Diagonally
  215: *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
  216: *>          of which matrices define their eigenvalues to high relative
  217: *>          accuracy.
  218: *> \endverbatim
  219: *>
  220: *> \param[out] M
  221: *> \verbatim
  222: *>          M is INTEGER
  223: *>          The total number of eigenvalues found.  0 <= M <= N.
  224: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] W
  228: *> \verbatim
  229: *>          W is DOUBLE PRECISION array, dimension (N)
  230: *>          The first M elements contain the selected eigenvalues in
  231: *>          ascending order.
  232: *> \endverbatim
  233: *>
  234: *> \param[out] Z
  235: *> \verbatim
  236: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  237: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  238: *>          contain the orthonormal eigenvectors of the matrix A
  239: *>          corresponding to the selected eigenvalues, with the i-th
  240: *>          column of Z holding the eigenvector associated with W(i).
  241: *>          If JOBZ = 'N', then Z is not referenced.
  242: *>          Note: the user must ensure that at least max(1,M) columns are
  243: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  244: *>          is not known in advance and an upper bound must be used.
  245: *> \endverbatim
  246: *>
  247: *> \param[in] LDZ
  248: *> \verbatim
  249: *>          LDZ is INTEGER
  250: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  251: *>          JOBZ = 'V', LDZ >= max(1,N).
  252: *> \endverbatim
  253: *>
  254: *> \param[out] ISUPPZ
  255: *> \verbatim
  256: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  257: *>          The support of the eigenvectors in Z, i.e., the indices
  258: *>          indicating the nonzero elements in Z. The i-th eigenvector
  259: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  260: *>          ISUPPZ( 2*i ).
  261: *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  262: *> \endverbatim
  263: *>
  264: *> \param[out] WORK
  265: *> \verbatim
  266: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  267: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  268: *> \endverbatim
  269: *>
  270: *> \param[in] LWORK
  271: *> \verbatim
  272: *>          LWORK is INTEGER
  273: *>          The length of the array WORK.  LWORK >= max(1,2*N).
  274: *>          For optimal efficiency, LWORK >= (NB+1)*N,
  275: *>          where NB is the max of the blocksize for ZHETRD and for
  276: *>          ZUNMTR as returned by ILAENV.
  277: *>
  278: *>          If LWORK = -1, then a workspace query is assumed; the routine
  279: *>          only calculates the optimal sizes of the WORK, RWORK and
  280: *>          IWORK arrays, returns these values as the first entries of
  281: *>          the WORK, RWORK and IWORK arrays, and no error message
  282: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  283: *> \endverbatim
  284: *>
  285: *> \param[out] RWORK
  286: *> \verbatim
  287: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  288: *>          On exit, if INFO = 0, RWORK(1) returns the optimal
  289: *>          (and minimal) LRWORK.
  290: *> \endverbatim
  291: *>
  292: *> \param[in] LRWORK
  293: *> \verbatim
  294: *>          LRWORK is INTEGER
  295: *>          The length of the array RWORK.  LRWORK >= max(1,24*N).
  296: *>
  297: *>          If LRWORK = -1, then a workspace query is assumed; the
  298: *>          routine only calculates the optimal sizes of the WORK, RWORK
  299: *>          and IWORK arrays, returns these values as the first entries
  300: *>          of the WORK, RWORK and IWORK arrays, and no error message
  301: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  302: *> \endverbatim
  303: *>
  304: *> \param[out] IWORK
  305: *> \verbatim
  306: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  307: *>          On exit, if INFO = 0, IWORK(1) returns the optimal
  308: *>          (and minimal) LIWORK.
  309: *> \endverbatim
  310: *>
  311: *> \param[in] LIWORK
  312: *> \verbatim
  313: *>          LIWORK is INTEGER
  314: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
  315: *>
  316: *>          If LIWORK = -1, then a workspace query is assumed; the
  317: *>          routine only calculates the optimal sizes of the WORK, RWORK
  318: *>          and IWORK arrays, returns these values as the first entries
  319: *>          of the WORK, RWORK and IWORK arrays, and no error message
  320: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  321: *> \endverbatim
  322: *>
  323: *> \param[out] INFO
  324: *> \verbatim
  325: *>          INFO is INTEGER
  326: *>          = 0:  successful exit
  327: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  328: *>          > 0:  Internal error
  329: *> \endverbatim
  330: *
  331: *  Authors:
  332: *  ========
  333: *
  334: *> \author Univ. of Tennessee 
  335: *> \author Univ. of California Berkeley 
  336: *> \author Univ. of Colorado Denver 
  337: *> \author NAG Ltd. 
  338: *
  339: *> \date June 2016
  340: *
  341: *> \ingroup complex16HEeigen
  342: *
  343: *> \par Contributors:
  344: *  ==================
  345: *>
  346: *>     Inderjit Dhillon, IBM Almaden, USA \n
  347: *>     Osni Marques, LBNL/NERSC, USA \n
  348: *>     Ken Stanley, Computer Science Division, University of
  349: *>       California at Berkeley, USA \n
  350: *>     Jason Riedy, Computer Science Division, University of
  351: *>       California at Berkeley, USA \n
  352: *>
  353: *  =====================================================================
  354:       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  355:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
  356:      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
  357: *
  358: *  -- LAPACK driver routine (version 3.6.1) --
  359: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  360: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  361: *     June 2016
  362: *
  363: *     .. Scalar Arguments ..
  364:       CHARACTER          JOBZ, RANGE, UPLO
  365:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
  366:      $                   M, N
  367:       DOUBLE PRECISION   ABSTOL, VL, VU
  368: *     ..
  369: *     .. Array Arguments ..
  370:       INTEGER            ISUPPZ( * ), IWORK( * )
  371:       DOUBLE PRECISION   RWORK( * ), W( * )
  372:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
  373: *     ..
  374: *
  375: *  =====================================================================
  376: *
  377: *     .. Parameters ..
  378:       DOUBLE PRECISION   ZERO, ONE, TWO
  379:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  380: *     ..
  381: *     .. Local Scalars ..
  382:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  383:      $                   WANTZ, TRYRAC
  384:       CHARACTER          ORDER
  385:       INTEGER            I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
  386:      $                   INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
  387:      $                   INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
  388:      $                   LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
  389:      $                   LWKOPT, LWMIN, NB, NSPLIT
  390:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  391:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  392: *     ..
  393: *     .. External Functions ..
  394:       LOGICAL            LSAME
  395:       INTEGER            ILAENV
  396:       DOUBLE PRECISION   DLAMCH, ZLANSY
  397:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
  398: *     ..
  399: *     .. External Subroutines ..
  400:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  401:      $                   ZHETRD, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
  402: *     ..
  403: *     .. Intrinsic Functions ..
  404:       INTRINSIC          DBLE, MAX, MIN, SQRT
  405: *     ..
  406: *     .. Executable Statements ..
  407: *
  408: *     Test the input parameters.
  409: *
  410:       IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
  411: *
  412:       LOWER = LSAME( UPLO, 'L' )
  413:       WANTZ = LSAME( JOBZ, 'V' )
  414:       ALLEIG = LSAME( RANGE, 'A' )
  415:       VALEIG = LSAME( RANGE, 'V' )
  416:       INDEIG = LSAME( RANGE, 'I' )
  417: *
  418:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
  419:      $         ( LIWORK.EQ.-1 ) )
  420: *
  421:       LRWMIN = MAX( 1, 24*N )
  422:       LIWMIN = MAX( 1, 10*N )
  423:       LWMIN = MAX( 1, 2*N )
  424: *
  425:       INFO = 0
  426:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  427:          INFO = -1
  428:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  429:          INFO = -2
  430:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  431:          INFO = -3
  432:       ELSE IF( N.LT.0 ) THEN
  433:          INFO = -4
  434:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  435:          INFO = -6
  436:       ELSE
  437:          IF( VALEIG ) THEN
  438:             IF( N.GT.0 .AND. VU.LE.VL )
  439:      $         INFO = -8
  440:          ELSE IF( INDEIG ) THEN
  441:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  442:                INFO = -9
  443:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  444:                INFO = -10
  445:             END IF
  446:          END IF
  447:       END IF
  448:       IF( INFO.EQ.0 ) THEN
  449:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  450:             INFO = -15
  451:          END IF
  452:       END IF
  453: *
  454:       IF( INFO.EQ.0 ) THEN
  455:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  456:          NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  457:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
  458:          WORK( 1 ) = LWKOPT
  459:          RWORK( 1 ) = LRWMIN
  460:          IWORK( 1 ) = LIWMIN
  461: *
  462:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  463:             INFO = -18
  464:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  465:             INFO = -20
  466:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  467:             INFO = -22
  468:          END IF
  469:       END IF
  470: *
  471:       IF( INFO.NE.0 ) THEN
  472:          CALL XERBLA( 'ZHEEVR', -INFO )
  473:          RETURN
  474:       ELSE IF( LQUERY ) THEN
  475:          RETURN
  476:       END IF
  477: *
  478: *     Quick return if possible
  479: *
  480:       M = 0
  481:       IF( N.EQ.0 ) THEN
  482:          WORK( 1 ) = 1
  483:          RETURN
  484:       END IF
  485: *
  486:       IF( N.EQ.1 ) THEN
  487:          WORK( 1 ) = 2
  488:          IF( ALLEIG .OR. INDEIG ) THEN
  489:             M = 1
  490:             W( 1 ) = DBLE( A( 1, 1 ) )
  491:          ELSE
  492:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  493:      $           THEN
  494:                M = 1
  495:                W( 1 ) = DBLE( A( 1, 1 ) )
  496:             END IF
  497:          END IF
  498:          IF( WANTZ ) THEN
  499:             Z( 1, 1 ) = ONE
  500:             ISUPPZ( 1 ) = 1
  501:             ISUPPZ( 2 ) = 1
  502:          END IF
  503:          RETURN
  504:       END IF
  505: *
  506: *     Get machine constants.
  507: *
  508:       SAFMIN = DLAMCH( 'Safe minimum' )
  509:       EPS = DLAMCH( 'Precision' )
  510:       SMLNUM = SAFMIN / EPS
  511:       BIGNUM = ONE / SMLNUM
  512:       RMIN = SQRT( SMLNUM )
  513:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  514: *
  515: *     Scale matrix to allowable range, if necessary.
  516: *
  517:       ISCALE = 0
  518:       ABSTLL = ABSTOL
  519:       IF (VALEIG) THEN
  520:          VLL = VL
  521:          VUU = VU
  522:       END IF
  523:       ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
  524:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  525:          ISCALE = 1
  526:          SIGMA = RMIN / ANRM
  527:       ELSE IF( ANRM.GT.RMAX ) THEN
  528:          ISCALE = 1
  529:          SIGMA = RMAX / ANRM
  530:       END IF
  531:       IF( ISCALE.EQ.1 ) THEN
  532:          IF( LOWER ) THEN
  533:             DO 10 J = 1, N
  534:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  535:    10       CONTINUE
  536:          ELSE
  537:             DO 20 J = 1, N
  538:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  539:    20       CONTINUE
  540:          END IF
  541:          IF( ABSTOL.GT.0 )
  542:      $      ABSTLL = ABSTOL*SIGMA
  543:          IF( VALEIG ) THEN
  544:             VLL = VL*SIGMA
  545:             VUU = VU*SIGMA
  546:          END IF
  547:       END IF
  548: 
  549: *     Initialize indices into workspaces.  Note: The IWORK indices are
  550: *     used only if DSTERF or ZSTEMR fail.
  551: 
  552: *     WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
  553: *     elementary reflectors used in ZHETRD.
  554:       INDTAU = 1
  555: *     INDWK is the starting offset of the remaining complex workspace,
  556: *     and LLWORK is the remaining complex workspace size.
  557:       INDWK = INDTAU + N
  558:       LLWORK = LWORK - INDWK + 1
  559: 
  560: *     RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
  561: *     entries.
  562:       INDRD = 1
  563: *     RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
  564: *     tridiagonal matrix from ZHETRD.
  565:       INDRE = INDRD + N
  566: *     RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
  567: *     -written by ZSTEMR (the DSTERF path copies the diagonal to W).
  568:       INDRDD = INDRE + N
  569: *     RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
  570: *     -written while computing the eigenvalues in DSTERF and ZSTEMR.
  571:       INDREE = INDRDD + N
  572: *     INDRWK is the starting offset of the left-over real workspace, and
  573: *     LLRWORK is the remaining workspace size.
  574:       INDRWK = INDREE + N
  575:       LLRWORK = LRWORK - INDRWK + 1
  576: 
  577: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  578: *     stores the block indices of each of the M<=N eigenvalues.
  579:       INDIBL = 1
  580: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  581: *     stores the starting and finishing indices of each block.
  582:       INDISP = INDIBL + N
  583: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  584: *     that corresponding to eigenvectors that fail to converge in
  585: *     DSTEIN.  This information is discarded; if any fail, the driver
  586: *     returns INFO > 0.
  587:       INDIFL = INDISP + N
  588: *     INDIWO is the offset of the remaining integer workspace.
  589:       INDIWO = INDIFL + N
  590: 
  591: *
  592: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  593: *
  594:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
  595:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
  596: *
  597: *     If all eigenvalues are desired
  598: *     then call DSTERF or ZSTEMR and ZUNMTR.
  599: *
  600:       TEST = .FALSE.
  601:       IF( INDEIG ) THEN
  602:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  603:             TEST = .TRUE.
  604:          END IF
  605:       END IF
  606:       IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
  607:          IF( .NOT.WANTZ ) THEN
  608:             CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
  609:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  610:             CALL DSTERF( N, W, RWORK( INDREE ), INFO )
  611:          ELSE
  612:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  613:             CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
  614: *
  615:             IF (ABSTOL .LE. TWO*N*EPS) THEN
  616:                TRYRAC = .TRUE.
  617:             ELSE
  618:                TRYRAC = .FALSE.
  619:             END IF
  620:             CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
  621:      $                   RWORK( INDREE ), VL, VU, IL, IU, M, W,
  622:      $                   Z, LDZ, N, ISUPPZ, TRYRAC,
  623:      $                   RWORK( INDRWK ), LLRWORK,
  624:      $                   IWORK, LIWORK, INFO )
  625: *
  626: *           Apply unitary matrix used in reduction to tridiagonal
  627: *           form to eigenvectors returned by ZSTEIN.
  628: *
  629:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
  630:                INDWKN = INDWK
  631:                LLWRKN = LWORK - INDWKN + 1
  632:                CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
  633:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
  634:      $                      LLWRKN, IINFO )
  635:             END IF
  636:          END IF
  637: *
  638: *
  639:          IF( INFO.EQ.0 ) THEN
  640:             M = N
  641:             GO TO 30
  642:          END IF
  643:          INFO = 0
  644:       END IF
  645: *
  646: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  647: *     Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
  648: *
  649:       IF( WANTZ ) THEN
  650:          ORDER = 'B'
  651:       ELSE
  652:          ORDER = 'E'
  653:       END IF
  654: 
  655:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  656:      $             RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
  657:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  658:      $             IWORK( INDIWO ), INFO )
  659: *
  660:       IF( WANTZ ) THEN
  661:          CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
  662:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  663:      $                RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
  664:      $                INFO )
  665: *
  666: *        Apply unitary matrix used in reduction to tridiagonal
  667: *        form to eigenvectors returned by ZSTEIN.
  668: *
  669:          INDWKN = INDWK
  670:          LLWRKN = LWORK - INDWKN + 1
  671:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  672:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  673:       END IF
  674: *
  675: *     If matrix was scaled, then rescale eigenvalues appropriately.
  676: *
  677:    30 CONTINUE
  678:       IF( ISCALE.EQ.1 ) THEN
  679:          IF( INFO.EQ.0 ) THEN
  680:             IMAX = M
  681:          ELSE
  682:             IMAX = INFO - 1
  683:          END IF
  684:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  685:       END IF
  686: *
  687: *     If eigenvalues are not in order, then sort them, along with
  688: *     eigenvectors.
  689: *
  690:       IF( WANTZ ) THEN
  691:          DO 50 J = 1, M - 1
  692:             I = 0
  693:             TMP1 = W( J )
  694:             DO 40 JJ = J + 1, M
  695:                IF( W( JJ ).LT.TMP1 ) THEN
  696:                   I = JJ
  697:                   TMP1 = W( JJ )
  698:                END IF
  699:    40       CONTINUE
  700: *
  701:             IF( I.NE.0 ) THEN
  702:                ITMP1 = IWORK( INDIBL+I-1 )
  703:                W( I ) = W( J )
  704:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  705:                W( J ) = TMP1
  706:                IWORK( INDIBL+J-1 ) = ITMP1
  707:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  708:             END IF
  709:    50    CONTINUE
  710:       END IF
  711: *
  712: *     Set WORK(1) to optimal workspace size.
  713: *
  714:       WORK( 1 ) = LWKOPT
  715:       RWORK( 1 ) = LRWMIN
  716:       IWORK( 1 ) = LIWMIN
  717: *
  718:       RETURN
  719: *
  720: *     End of ZHEEVR
  721: *
  722:       END

CVSweb interface <joel.bertrand@systella.fr>