File:  [local] / rpl / lapack / lapack / zheevr.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:31 2010 UTC (14 years, 1 month ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
    2:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
    3:      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
   13:      $                   M, N
   14:       DOUBLE PRECISION   ABSTOL, VL, VU
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            ISUPPZ( * ), IWORK( * )
   18:       DOUBLE PRECISION   RWORK( * ), W( * )
   19:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
   26: *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
   27: *  be selected by specifying either a range of values or a range of
   28: *  indices for the desired eigenvalues.
   29: *
   30: *  ZHEEVR first reduces the matrix A to tridiagonal form T with a call
   31: *  to ZHETRD.  Then, whenever possible, ZHEEVR calls ZSTEMR to compute
   32: *  eigenspectrum using Relatively Robust Representations.  ZSTEMR
   33: *  computes eigenvalues by the dqds algorithm, while orthogonal
   34: *  eigenvectors are computed from various "good" L D L^T representations
   35: *  (also known as Relatively Robust Representations). Gram-Schmidt
   36: *  orthogonalization is avoided as far as possible. More specifically,
   37: *  the various steps of the algorithm are as follows.
   38: *
   39: *  For each unreduced block (submatrix) of T,
   40: *     (a) Compute T - sigma I  = L D L^T, so that L and D
   41: *         define all the wanted eigenvalues to high relative accuracy.
   42: *         This means that small relative changes in the entries of D and L
   43: *         cause only small relative changes in the eigenvalues and
   44: *         eigenvectors. The standard (unfactored) representation of the
   45: *         tridiagonal matrix T does not have this property in general.
   46: *     (b) Compute the eigenvalues to suitable accuracy.
   47: *         If the eigenvectors are desired, the algorithm attains full
   48: *         accuracy of the computed eigenvalues only right before
   49: *         the corresponding vectors have to be computed, see steps c) and d).
   50: *     (c) For each cluster of close eigenvalues, select a new
   51: *         shift close to the cluster, find a new factorization, and refine
   52: *         the shifted eigenvalues to suitable accuracy.
   53: *     (d) For each eigenvalue with a large enough relative separation compute
   54: *         the corresponding eigenvector by forming a rank revealing twisted
   55: *         factorization. Go back to (c) for any clusters that remain.
   56: *
   57: *  The desired accuracy of the output can be specified by the input
   58: *  parameter ABSTOL.
   59: *
   60: *  For more details, see DSTEMR's documentation and:
   61: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   62: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   63: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   64: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   65: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   66: *    2004.  Also LAPACK Working Note 154.
   67: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   68: *    tridiagonal eigenvalue/eigenvector problem",
   69: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
   70: *    UC Berkeley, May 1997.
   71: *
   72: *
   73: *  Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
   74: *  on machines which conform to the ieee-754 floating point standard.
   75: *  ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
   76: *  when partial spectrum requests are made.
   77: *
   78: *  Normal execution of ZSTEMR may create NaNs and infinities and
   79: *  hence may abort due to a floating point exception in environments
   80: *  which do not handle NaNs and infinities in the ieee standard default
   81: *  manner.
   82: *
   83: *  Arguments
   84: *  =========
   85: *
   86: *  JOBZ    (input) CHARACTER*1
   87: *          = 'N':  Compute eigenvalues only;
   88: *          = 'V':  Compute eigenvalues and eigenvectors.
   89: *
   90: *  RANGE   (input) CHARACTER*1
   91: *          = 'A': all eigenvalues will be found.
   92: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   93: *                 will be found.
   94: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   95: ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
   96: ********** ZSTEIN are called
   97: *
   98: *  UPLO    (input) CHARACTER*1
   99: *          = 'U':  Upper triangle of A is stored;
  100: *          = 'L':  Lower triangle of A is stored.
  101: *
  102: *  N       (input) INTEGER
  103: *          The order of the matrix A.  N >= 0.
  104: *
  105: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
  106: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
  107: *          leading N-by-N upper triangular part of A contains the
  108: *          upper triangular part of the matrix A.  If UPLO = 'L',
  109: *          the leading N-by-N lower triangular part of A contains
  110: *          the lower triangular part of the matrix A.
  111: *          On exit, the lower triangle (if UPLO='L') or the upper
  112: *          triangle (if UPLO='U') of A, including the diagonal, is
  113: *          destroyed.
  114: *
  115: *  LDA     (input) INTEGER
  116: *          The leading dimension of the array A.  LDA >= max(1,N).
  117: *
  118: *  VL      (input) DOUBLE PRECISION
  119: *  VU      (input) DOUBLE PRECISION
  120: *          If RANGE='V', the lower and upper bounds of the interval to
  121: *          be searched for eigenvalues. VL < VU.
  122: *          Not referenced if RANGE = 'A' or 'I'.
  123: *
  124: *  IL      (input) INTEGER
  125: *  IU      (input) INTEGER
  126: *          If RANGE='I', the indices (in ascending order) of the
  127: *          smallest and largest eigenvalues to be returned.
  128: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  129: *          Not referenced if RANGE = 'A' or 'V'.
  130: *
  131: *  ABSTOL  (input) DOUBLE PRECISION
  132: *          The absolute error tolerance for the eigenvalues.
  133: *          An approximate eigenvalue is accepted as converged
  134: *          when it is determined to lie in an interval [a,b]
  135: *          of width less than or equal to
  136: *
  137: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
  138: *
  139: *          where EPS is the machine precision.  If ABSTOL is less than
  140: *          or equal to zero, then  EPS*|T|  will be used in its place,
  141: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  142: *          by reducing A to tridiagonal form.
  143: *
  144: *          See "Computing Small Singular Values of Bidiagonal Matrices
  145: *          with Guaranteed High Relative Accuracy," by Demmel and
  146: *          Kahan, LAPACK Working Note #3.
  147: *
  148: *          If high relative accuracy is important, set ABSTOL to
  149: *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
  150: *          eigenvalues are computed to high relative accuracy when
  151: *          possible in future releases.  The current code does not
  152: *          make any guarantees about high relative accuracy, but
  153: *          furutre releases will. See J. Barlow and J. Demmel,
  154: *          "Computing Accurate Eigensystems of Scaled Diagonally
  155: *          Dominant Matrices", LAPACK Working Note #7, for a discussion
  156: *          of which matrices define their eigenvalues to high relative
  157: *          accuracy.
  158: *
  159: *  M       (output) INTEGER
  160: *          The total number of eigenvalues found.  0 <= M <= N.
  161: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  162: *
  163: *  W       (output) DOUBLE PRECISION array, dimension (N)
  164: *          The first M elements contain the selected eigenvalues in
  165: *          ascending order.
  166: *
  167: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
  168: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  169: *          contain the orthonormal eigenvectors of the matrix A
  170: *          corresponding to the selected eigenvalues, with the i-th
  171: *          column of Z holding the eigenvector associated with W(i).
  172: *          If JOBZ = 'N', then Z is not referenced.
  173: *          Note: the user must ensure that at least max(1,M) columns are
  174: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  175: *          is not known in advance and an upper bound must be used.
  176: *
  177: *  LDZ     (input) INTEGER
  178: *          The leading dimension of the array Z.  LDZ >= 1, and if
  179: *          JOBZ = 'V', LDZ >= max(1,N).
  180: *
  181: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
  182: *          The support of the eigenvectors in Z, i.e., the indices
  183: *          indicating the nonzero elements in Z. The i-th eigenvector
  184: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  185: *          ISUPPZ( 2*i ).
  186: ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  187: *
  188: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  189: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  190: *
  191: *  LWORK   (input) INTEGER
  192: *          The length of the array WORK.  LWORK >= max(1,2*N).
  193: *          For optimal efficiency, LWORK >= (NB+1)*N,
  194: *          where NB is the max of the blocksize for ZHETRD and for
  195: *          ZUNMTR as returned by ILAENV.
  196: *
  197: *          If LWORK = -1, then a workspace query is assumed; the routine
  198: *          only calculates the optimal sizes of the WORK, RWORK and
  199: *          IWORK arrays, returns these values as the first entries of
  200: *          the WORK, RWORK and IWORK arrays, and no error message
  201: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  202: *
  203: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  204: *          On exit, if INFO = 0, RWORK(1) returns the optimal
  205: *          (and minimal) LRWORK.
  206: *
  207: * LRWORK   (input) INTEGER
  208: *          The length of the array RWORK.  LRWORK >= max(1,24*N).
  209: *
  210: *          If LRWORK = -1, then a workspace query is assumed; the
  211: *          routine only calculates the optimal sizes of the WORK, RWORK
  212: *          and IWORK arrays, returns these values as the first entries
  213: *          of the WORK, RWORK and IWORK arrays, and no error message
  214: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  215: *
  216: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
  217: *          On exit, if INFO = 0, IWORK(1) returns the optimal
  218: *          (and minimal) LIWORK.
  219: *
  220: * LIWORK   (input) INTEGER
  221: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
  222: *
  223: *          If LIWORK = -1, then a workspace query is assumed; the
  224: *          routine only calculates the optimal sizes of the WORK, RWORK
  225: *          and IWORK arrays, returns these values as the first entries
  226: *          of the WORK, RWORK and IWORK arrays, and no error message
  227: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  228: *
  229: *  INFO    (output) INTEGER
  230: *          = 0:  successful exit
  231: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  232: *          > 0:  Internal error
  233: *
  234: *  Further Details
  235: *  ===============
  236: *
  237: *  Based on contributions by
  238: *     Inderjit Dhillon, IBM Almaden, USA
  239: *     Osni Marques, LBNL/NERSC, USA
  240: *     Ken Stanley, Computer Science Division, University of
  241: *       California at Berkeley, USA
  242: *     Jason Riedy, Computer Science Division, University of
  243: *       California at Berkeley, USA
  244: *
  245: * =====================================================================
  246: *
  247: *     .. Parameters ..
  248:       DOUBLE PRECISION   ZERO, ONE, TWO
  249:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  250: *     ..
  251: *     .. Local Scalars ..
  252:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  253:      $                   WANTZ, TRYRAC
  254:       CHARACTER          ORDER
  255:       INTEGER            I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
  256:      $                   INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
  257:      $                   INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
  258:      $                   LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
  259:      $                   LWKOPT, LWMIN, NB, NSPLIT
  260:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  261:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  262: *     ..
  263: *     .. External Functions ..
  264:       LOGICAL            LSAME
  265:       INTEGER            ILAENV
  266:       DOUBLE PRECISION   DLAMCH, ZLANSY
  267:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
  268: *     ..
  269: *     .. External Subroutines ..
  270:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  271:      $                   ZHETRD, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
  272: *     ..
  273: *     .. Intrinsic Functions ..
  274:       INTRINSIC          DBLE, MAX, MIN, SQRT
  275: *     ..
  276: *     .. Executable Statements ..
  277: *
  278: *     Test the input parameters.
  279: *
  280:       IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
  281: *
  282:       LOWER = LSAME( UPLO, 'L' )
  283:       WANTZ = LSAME( JOBZ, 'V' )
  284:       ALLEIG = LSAME( RANGE, 'A' )
  285:       VALEIG = LSAME( RANGE, 'V' )
  286:       INDEIG = LSAME( RANGE, 'I' )
  287: *
  288:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
  289:      $         ( LIWORK.EQ.-1 ) )
  290: *
  291:       LRWMIN = MAX( 1, 24*N )
  292:       LIWMIN = MAX( 1, 10*N )
  293:       LWMIN = MAX( 1, 2*N )
  294: *
  295:       INFO = 0
  296:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  297:          INFO = -1
  298:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  299:          INFO = -2
  300:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  301:          INFO = -3
  302:       ELSE IF( N.LT.0 ) THEN
  303:          INFO = -4
  304:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  305:          INFO = -6
  306:       ELSE
  307:          IF( VALEIG ) THEN
  308:             IF( N.GT.0 .AND. VU.LE.VL )
  309:      $         INFO = -8
  310:          ELSE IF( INDEIG ) THEN
  311:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  312:                INFO = -9
  313:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  314:                INFO = -10
  315:             END IF
  316:          END IF
  317:       END IF
  318:       IF( INFO.EQ.0 ) THEN
  319:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  320:             INFO = -15
  321:          END IF
  322:       END IF
  323: *
  324:       IF( INFO.EQ.0 ) THEN
  325:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  326:          NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  327:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
  328:          WORK( 1 ) = LWKOPT
  329:          RWORK( 1 ) = LRWMIN
  330:          IWORK( 1 ) = LIWMIN
  331: *
  332:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  333:             INFO = -18
  334:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  335:             INFO = -20
  336:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  337:             INFO = -22
  338:          END IF
  339:       END IF
  340: *
  341:       IF( INFO.NE.0 ) THEN
  342:          CALL XERBLA( 'ZHEEVR', -INFO )
  343:          RETURN
  344:       ELSE IF( LQUERY ) THEN
  345:          RETURN
  346:       END IF
  347: *
  348: *     Quick return if possible
  349: *
  350:       M = 0
  351:       IF( N.EQ.0 ) THEN
  352:          WORK( 1 ) = 1
  353:          RETURN
  354:       END IF
  355: *
  356:       IF( N.EQ.1 ) THEN
  357:          WORK( 1 ) = 2
  358:          IF( ALLEIG .OR. INDEIG ) THEN
  359:             M = 1
  360:             W( 1 ) = DBLE( A( 1, 1 ) )
  361:          ELSE
  362:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  363:      $           THEN
  364:                M = 1
  365:                W( 1 ) = DBLE( A( 1, 1 ) )
  366:             END IF
  367:          END IF
  368:          IF( WANTZ )
  369:      $      Z( 1, 1 ) = ONE
  370:          RETURN
  371:       END IF
  372: *
  373: *     Get machine constants.
  374: *
  375:       SAFMIN = DLAMCH( 'Safe minimum' )
  376:       EPS = DLAMCH( 'Precision' )
  377:       SMLNUM = SAFMIN / EPS
  378:       BIGNUM = ONE / SMLNUM
  379:       RMIN = SQRT( SMLNUM )
  380:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  381: *
  382: *     Scale matrix to allowable range, if necessary.
  383: *
  384:       ISCALE = 0
  385:       ABSTLL = ABSTOL
  386:       IF (VALEIG) THEN
  387:          VLL = VL
  388:          VUU = VU
  389:       END IF
  390:       ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
  391:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  392:          ISCALE = 1
  393:          SIGMA = RMIN / ANRM
  394:       ELSE IF( ANRM.GT.RMAX ) THEN
  395:          ISCALE = 1
  396:          SIGMA = RMAX / ANRM
  397:       END IF
  398:       IF( ISCALE.EQ.1 ) THEN
  399:          IF( LOWER ) THEN
  400:             DO 10 J = 1, N
  401:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  402:    10       CONTINUE
  403:          ELSE
  404:             DO 20 J = 1, N
  405:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  406:    20       CONTINUE
  407:          END IF
  408:          IF( ABSTOL.GT.0 )
  409:      $      ABSTLL = ABSTOL*SIGMA
  410:          IF( VALEIG ) THEN
  411:             VLL = VL*SIGMA
  412:             VUU = VU*SIGMA
  413:          END IF
  414:       END IF
  415: 
  416: *     Initialize indices into workspaces.  Note: The IWORK indices are
  417: *     used only if DSTERF or ZSTEMR fail.
  418: 
  419: *     WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
  420: *     elementary reflectors used in ZHETRD.
  421:       INDTAU = 1
  422: *     INDWK is the starting offset of the remaining complex workspace,
  423: *     and LLWORK is the remaining complex workspace size.
  424:       INDWK = INDTAU + N
  425:       LLWORK = LWORK - INDWK + 1
  426: 
  427: *     RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
  428: *     entries.
  429:       INDRD = 1
  430: *     RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
  431: *     tridiagonal matrix from ZHETRD.
  432:       INDRE = INDRD + N
  433: *     RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
  434: *     -written by ZSTEMR (the DSTERF path copies the diagonal to W).
  435:       INDRDD = INDRE + N
  436: *     RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
  437: *     -written while computing the eigenvalues in DSTERF and ZSTEMR.
  438:       INDREE = INDRDD + N
  439: *     INDRWK is the starting offset of the left-over real workspace, and
  440: *     LLRWORK is the remaining workspace size.
  441:       INDRWK = INDREE + N
  442:       LLRWORK = LRWORK - INDRWK + 1
  443: 
  444: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  445: *     stores the block indices of each of the M<=N eigenvalues.
  446:       INDIBL = 1
  447: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  448: *     stores the starting and finishing indices of each block.
  449:       INDISP = INDIBL + N
  450: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  451: *     that corresponding to eigenvectors that fail to converge in
  452: *     DSTEIN.  This information is discarded; if any fail, the driver
  453: *     returns INFO > 0.
  454:       INDIFL = INDISP + N
  455: *     INDIWO is the offset of the remaining integer workspace.
  456:       INDIWO = INDISP + N
  457: 
  458: *
  459: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  460: *
  461:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
  462:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
  463: *
  464: *     If all eigenvalues are desired
  465: *     then call DSTERF or ZSTEMR and ZUNMTR.
  466: *
  467:       TEST = .FALSE.
  468:       IF( INDEIG ) THEN
  469:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  470:             TEST = .TRUE.
  471:          END IF
  472:       END IF
  473:       IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
  474:          IF( .NOT.WANTZ ) THEN
  475:             CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
  476:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  477:             CALL DSTERF( N, W, RWORK( INDREE ), INFO )
  478:          ELSE
  479:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  480:             CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
  481: *
  482:             IF (ABSTOL .LE. TWO*N*EPS) THEN
  483:                TRYRAC = .TRUE.
  484:             ELSE
  485:                TRYRAC = .FALSE.
  486:             END IF
  487:             CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
  488:      $                   RWORK( INDREE ), VL, VU, IL, IU, M, W,
  489:      $                   Z, LDZ, N, ISUPPZ, TRYRAC,
  490:      $                   RWORK( INDRWK ), LLRWORK,
  491:      $                   IWORK, LIWORK, INFO )
  492: *
  493: *           Apply unitary matrix used in reduction to tridiagonal
  494: *           form to eigenvectors returned by ZSTEIN.
  495: *
  496:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
  497:                INDWKN = INDWK
  498:                LLWRKN = LWORK - INDWKN + 1
  499:                CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
  500:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
  501:      $                      LLWRKN, IINFO )
  502:             END IF
  503:          END IF
  504: *
  505: *
  506:          IF( INFO.EQ.0 ) THEN
  507:             M = N
  508:             GO TO 30
  509:          END IF
  510:          INFO = 0
  511:       END IF
  512: *
  513: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  514: *     Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
  515: *
  516:       IF( WANTZ ) THEN
  517:          ORDER = 'B'
  518:       ELSE
  519:          ORDER = 'E'
  520:       END IF
  521: 
  522:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  523:      $             RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
  524:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  525:      $             IWORK( INDIWO ), INFO )
  526: *
  527:       IF( WANTZ ) THEN
  528:          CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
  529:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  530:      $                RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
  531:      $                INFO )
  532: *
  533: *        Apply unitary matrix used in reduction to tridiagonal
  534: *        form to eigenvectors returned by ZSTEIN.
  535: *
  536:          INDWKN = INDWK
  537:          LLWRKN = LWORK - INDWKN + 1
  538:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  539:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  540:       END IF
  541: *
  542: *     If matrix was scaled, then rescale eigenvalues appropriately.
  543: *
  544:    30 CONTINUE
  545:       IF( ISCALE.EQ.1 ) THEN
  546:          IF( INFO.EQ.0 ) THEN
  547:             IMAX = M
  548:          ELSE
  549:             IMAX = INFO - 1
  550:          END IF
  551:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  552:       END IF
  553: *
  554: *     If eigenvalues are not in order, then sort them, along with
  555: *     eigenvectors.
  556: *
  557:       IF( WANTZ ) THEN
  558:          DO 50 J = 1, M - 1
  559:             I = 0
  560:             TMP1 = W( J )
  561:             DO 40 JJ = J + 1, M
  562:                IF( W( JJ ).LT.TMP1 ) THEN
  563:                   I = JJ
  564:                   TMP1 = W( JJ )
  565:                END IF
  566:    40       CONTINUE
  567: *
  568:             IF( I.NE.0 ) THEN
  569:                ITMP1 = IWORK( INDIBL+I-1 )
  570:                W( I ) = W( J )
  571:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  572:                W( J ) = TMP1
  573:                IWORK( INDIBL+J-1 ) = ITMP1
  574:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  575:             END IF
  576:    50    CONTINUE
  577:       END IF
  578: *
  579: *     Set WORK(1) to optimal workspace size.
  580: *
  581:       WORK( 1 ) = LWKOPT
  582:       RWORK( 1 ) = LRWMIN
  583:       IWORK( 1 ) = LIWMIN
  584: *
  585:       RETURN
  586: *
  587: *     End of ZHEEVR
  588: *
  589:       END

CVSweb interface <joel.bertrand@systella.fr>