File:  [local] / rpl / lapack / lapack / zheevr.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:47 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief <b> ZHEEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZHEEVR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
   22: *                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
   23: *                          RWORK, LRWORK, IWORK, LIWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBZ, RANGE, UPLO
   27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
   28: *      $                   M, N
   29: *       DOUBLE PRECISION   ABSTOL, VL, VU
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       INTEGER            ISUPPZ( * ), IWORK( * )
   33: *       DOUBLE PRECISION   RWORK( * ), W( * )
   34: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
   44: *> of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
   45: *> be selected by specifying either a range of values or a range of
   46: *> indices for the desired eigenvalues.
   47: *>
   48: *> ZHEEVR first reduces the matrix A to tridiagonal form T with a call
   49: *> to ZHETRD.  Then, whenever possible, ZHEEVR calls ZSTEMR to compute
   50: *> eigenspectrum using Relatively Robust Representations.  ZSTEMR
   51: *> computes eigenvalues by the dqds algorithm, while orthogonal
   52: *> eigenvectors are computed from various "good" L D L^T representations
   53: *> (also known as Relatively Robust Representations). Gram-Schmidt
   54: *> orthogonalization is avoided as far as possible. More specifically,
   55: *> the various steps of the algorithm are as follows.
   56: *>
   57: *> For each unreduced block (submatrix) of T,
   58: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
   59: *>        define all the wanted eigenvalues to high relative accuracy.
   60: *>        This means that small relative changes in the entries of D and L
   61: *>        cause only small relative changes in the eigenvalues and
   62: *>        eigenvectors. The standard (unfactored) representation of the
   63: *>        tridiagonal matrix T does not have this property in general.
   64: *>    (b) Compute the eigenvalues to suitable accuracy.
   65: *>        If the eigenvectors are desired, the algorithm attains full
   66: *>        accuracy of the computed eigenvalues only right before
   67: *>        the corresponding vectors have to be computed, see steps c) and d).
   68: *>    (c) For each cluster of close eigenvalues, select a new
   69: *>        shift close to the cluster, find a new factorization, and refine
   70: *>        the shifted eigenvalues to suitable accuracy.
   71: *>    (d) For each eigenvalue with a large enough relative separation compute
   72: *>        the corresponding eigenvector by forming a rank revealing twisted
   73: *>        factorization. Go back to (c) for any clusters that remain.
   74: *>
   75: *> The desired accuracy of the output can be specified by the input
   76: *> parameter ABSTOL.
   77: *>
   78: *> For more details, see DSTEMR's documentation and:
   79: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
   80: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
   81: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
   82: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
   83: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
   84: *>   2004.  Also LAPACK Working Note 154.
   85: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
   86: *>   tridiagonal eigenvalue/eigenvector problem",
   87: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
   88: *>   UC Berkeley, May 1997.
   89: *>
   90: *>
   91: *> Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
   92: *> on machines which conform to the ieee-754 floating point standard.
   93: *> ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
   94: *> when partial spectrum requests are made.
   95: *>
   96: *> Normal execution of ZSTEMR may create NaNs and infinities and
   97: *> hence may abort due to a floating point exception in environments
   98: *> which do not handle NaNs and infinities in the ieee standard default
   99: *> manner.
  100: *> \endverbatim
  101: *
  102: *  Arguments:
  103: *  ==========
  104: *
  105: *> \param[in] JOBZ
  106: *> \verbatim
  107: *>          JOBZ is CHARACTER*1
  108: *>          = 'N':  Compute eigenvalues only;
  109: *>          = 'V':  Compute eigenvalues and eigenvectors.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] RANGE
  113: *> \verbatim
  114: *>          RANGE is CHARACTER*1
  115: *>          = 'A': all eigenvalues will be found.
  116: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
  117: *>                 will be found.
  118: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
  119: *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
  120: *>          ZSTEIN are called
  121: *> \endverbatim
  122: *>
  123: *> \param[in] UPLO
  124: *> \verbatim
  125: *>          UPLO is CHARACTER*1
  126: *>          = 'U':  Upper triangle of A is stored;
  127: *>          = 'L':  Lower triangle of A is stored.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] N
  131: *> \verbatim
  132: *>          N is INTEGER
  133: *>          The order of the matrix A.  N >= 0.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] A
  137: *> \verbatim
  138: *>          A is COMPLEX*16 array, dimension (LDA, N)
  139: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
  140: *>          leading N-by-N upper triangular part of A contains the
  141: *>          upper triangular part of the matrix A.  If UPLO = 'L',
  142: *>          the leading N-by-N lower triangular part of A contains
  143: *>          the lower triangular part of the matrix A.
  144: *>          On exit, the lower triangle (if UPLO='L') or the upper
  145: *>          triangle (if UPLO='U') of A, including the diagonal, is
  146: *>          destroyed.
  147: *> \endverbatim
  148: *>
  149: *> \param[in] LDA
  150: *> \verbatim
  151: *>          LDA is INTEGER
  152: *>          The leading dimension of the array A.  LDA >= max(1,N).
  153: *> \endverbatim
  154: *>
  155: *> \param[in] VL
  156: *> \verbatim
  157: *>          VL is DOUBLE PRECISION
  158: *> \endverbatim
  159: *>
  160: *> \param[in] VU
  161: *> \verbatim
  162: *>          VU is DOUBLE PRECISION
  163: *>          If RANGE='V', the lower and upper bounds of the interval to
  164: *>          be searched for eigenvalues. VL < VU.
  165: *>          Not referenced if RANGE = 'A' or 'I'.
  166: *> \endverbatim
  167: *>
  168: *> \param[in] IL
  169: *> \verbatim
  170: *>          IL is INTEGER
  171: *> \endverbatim
  172: *>
  173: *> \param[in] IU
  174: *> \verbatim
  175: *>          IU is INTEGER
  176: *>          If RANGE='I', the indices (in ascending order) of the
  177: *>          smallest and largest eigenvalues to be returned.
  178: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  179: *>          Not referenced if RANGE = 'A' or 'V'.
  180: *> \endverbatim
  181: *>
  182: *> \param[in] ABSTOL
  183: *> \verbatim
  184: *>          ABSTOL is DOUBLE PRECISION
  185: *>          The absolute error tolerance for the eigenvalues.
  186: *>          An approximate eigenvalue is accepted as converged
  187: *>          when it is determined to lie in an interval [a,b]
  188: *>          of width less than or equal to
  189: *>
  190: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
  191: *>
  192: *>          where EPS is the machine precision.  If ABSTOL is less than
  193: *>          or equal to zero, then  EPS*|T|  will be used in its place,
  194: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
  195: *>          by reducing A to tridiagonal form.
  196: *>
  197: *>          See "Computing Small Singular Values of Bidiagonal Matrices
  198: *>          with Guaranteed High Relative Accuracy," by Demmel and
  199: *>          Kahan, LAPACK Working Note #3.
  200: *>
  201: *>          If high relative accuracy is important, set ABSTOL to
  202: *>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
  203: *>          eigenvalues are computed to high relative accuracy when
  204: *>          possible in future releases.  The current code does not
  205: *>          make any guarantees about high relative accuracy, but
  206: *>          furutre releases will. See J. Barlow and J. Demmel,
  207: *>          "Computing Accurate Eigensystems of Scaled Diagonally
  208: *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
  209: *>          of which matrices define their eigenvalues to high relative
  210: *>          accuracy.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] M
  214: *> \verbatim
  215: *>          M is INTEGER
  216: *>          The total number of eigenvalues found.  0 <= M <= N.
  217: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  218: *> \endverbatim
  219: *>
  220: *> \param[out] W
  221: *> \verbatim
  222: *>          W is DOUBLE PRECISION array, dimension (N)
  223: *>          The first M elements contain the selected eigenvalues in
  224: *>          ascending order.
  225: *> \endverbatim
  226: *>
  227: *> \param[out] Z
  228: *> \verbatim
  229: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
  230: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  231: *>          contain the orthonormal eigenvectors of the matrix A
  232: *>          corresponding to the selected eigenvalues, with the i-th
  233: *>          column of Z holding the eigenvector associated with W(i).
  234: *>          If JOBZ = 'N', then Z is not referenced.
  235: *>          Note: the user must ensure that at least max(1,M) columns are
  236: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
  237: *>          is not known in advance and an upper bound must be used.
  238: *> \endverbatim
  239: *>
  240: *> \param[in] LDZ
  241: *> \verbatim
  242: *>          LDZ is INTEGER
  243: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  244: *>          JOBZ = 'V', LDZ >= max(1,N).
  245: *> \endverbatim
  246: *>
  247: *> \param[out] ISUPPZ
  248: *> \verbatim
  249: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
  250: *>          The support of the eigenvectors in Z, i.e., the indices
  251: *>          indicating the nonzero elements in Z. The i-th eigenvector
  252: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
  253: *>          ISUPPZ( 2*i ).
  254: *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
  255: *> \endverbatim
  256: *>
  257: *> \param[out] WORK
  258: *> \verbatim
  259: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  260: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  261: *> \endverbatim
  262: *>
  263: *> \param[in] LWORK
  264: *> \verbatim
  265: *>          LWORK is INTEGER
  266: *>          The length of the array WORK.  LWORK >= max(1,2*N).
  267: *>          For optimal efficiency, LWORK >= (NB+1)*N,
  268: *>          where NB is the max of the blocksize for ZHETRD and for
  269: *>          ZUNMTR as returned by ILAENV.
  270: *>
  271: *>          If LWORK = -1, then a workspace query is assumed; the routine
  272: *>          only calculates the optimal sizes of the WORK, RWORK and
  273: *>          IWORK arrays, returns these values as the first entries of
  274: *>          the WORK, RWORK and IWORK arrays, and no error message
  275: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  276: *> \endverbatim
  277: *>
  278: *> \param[out] RWORK
  279: *> \verbatim
  280: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  281: *>          On exit, if INFO = 0, RWORK(1) returns the optimal
  282: *>          (and minimal) LRWORK.
  283: *> \endverbatim
  284: *>
  285: *> \param[in] LRWORK
  286: *> \verbatim
  287: *>          LRWORK is INTEGER
  288: *>          The length of the array RWORK.  LRWORK >= max(1,24*N).
  289: *>
  290: *>          If LRWORK = -1, then a workspace query is assumed; the
  291: *>          routine only calculates the optimal sizes of the WORK, RWORK
  292: *>          and IWORK arrays, returns these values as the first entries
  293: *>          of the WORK, RWORK and IWORK arrays, and no error message
  294: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  295: *> \endverbatim
  296: *>
  297: *> \param[out] IWORK
  298: *> \verbatim
  299: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  300: *>          On exit, if INFO = 0, IWORK(1) returns the optimal
  301: *>          (and minimal) LIWORK.
  302: *> \endverbatim
  303: *>
  304: *> \param[in] LIWORK
  305: *> \verbatim
  306: *>          LIWORK is INTEGER
  307: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
  308: *>
  309: *>          If LIWORK = -1, then a workspace query is assumed; the
  310: *>          routine only calculates the optimal sizes of the WORK, RWORK
  311: *>          and IWORK arrays, returns these values as the first entries
  312: *>          of the WORK, RWORK and IWORK arrays, and no error message
  313: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  314: *> \endverbatim
  315: *>
  316: *> \param[out] INFO
  317: *> \verbatim
  318: *>          INFO is INTEGER
  319: *>          = 0:  successful exit
  320: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  321: *>          > 0:  Internal error
  322: *> \endverbatim
  323: *
  324: *  Authors:
  325: *  ========
  326: *
  327: *> \author Univ. of Tennessee 
  328: *> \author Univ. of California Berkeley 
  329: *> \author Univ. of Colorado Denver 
  330: *> \author NAG Ltd. 
  331: *
  332: *> \date November 2011
  333: *
  334: *> \ingroup complex16HEeigen
  335: *
  336: *> \par Contributors:
  337: *  ==================
  338: *>
  339: *>     Inderjit Dhillon, IBM Almaden, USA \n
  340: *>     Osni Marques, LBNL/NERSC, USA \n
  341: *>     Ken Stanley, Computer Science Division, University of
  342: *>       California at Berkeley, USA \n
  343: *>     Jason Riedy, Computer Science Division, University of
  344: *>       California at Berkeley, USA \n
  345: *>
  346: *  =====================================================================
  347:       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
  348:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
  349:      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
  350: *
  351: *  -- LAPACK driver routine (version 3.4.0) --
  352: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  353: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  354: *     November 2011
  355: *
  356: *     .. Scalar Arguments ..
  357:       CHARACTER          JOBZ, RANGE, UPLO
  358:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
  359:      $                   M, N
  360:       DOUBLE PRECISION   ABSTOL, VL, VU
  361: *     ..
  362: *     .. Array Arguments ..
  363:       INTEGER            ISUPPZ( * ), IWORK( * )
  364:       DOUBLE PRECISION   RWORK( * ), W( * )
  365:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
  366: *     ..
  367: *
  368: *  =====================================================================
  369: *
  370: *     .. Parameters ..
  371:       DOUBLE PRECISION   ZERO, ONE, TWO
  372:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  373: *     ..
  374: *     .. Local Scalars ..
  375:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  376:      $                   WANTZ, TRYRAC
  377:       CHARACTER          ORDER
  378:       INTEGER            I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
  379:      $                   INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
  380:      $                   INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
  381:      $                   LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
  382:      $                   LWKOPT, LWMIN, NB, NSPLIT
  383:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  384:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  385: *     ..
  386: *     .. External Functions ..
  387:       LOGICAL            LSAME
  388:       INTEGER            ILAENV
  389:       DOUBLE PRECISION   DLAMCH, ZLANSY
  390:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
  391: *     ..
  392: *     .. External Subroutines ..
  393:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  394:      $                   ZHETRD, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
  395: *     ..
  396: *     .. Intrinsic Functions ..
  397:       INTRINSIC          DBLE, MAX, MIN, SQRT
  398: *     ..
  399: *     .. Executable Statements ..
  400: *
  401: *     Test the input parameters.
  402: *
  403:       IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
  404: *
  405:       LOWER = LSAME( UPLO, 'L' )
  406:       WANTZ = LSAME( JOBZ, 'V' )
  407:       ALLEIG = LSAME( RANGE, 'A' )
  408:       VALEIG = LSAME( RANGE, 'V' )
  409:       INDEIG = LSAME( RANGE, 'I' )
  410: *
  411:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
  412:      $         ( LIWORK.EQ.-1 ) )
  413: *
  414:       LRWMIN = MAX( 1, 24*N )
  415:       LIWMIN = MAX( 1, 10*N )
  416:       LWMIN = MAX( 1, 2*N )
  417: *
  418:       INFO = 0
  419:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  420:          INFO = -1
  421:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  422:          INFO = -2
  423:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  424:          INFO = -3
  425:       ELSE IF( N.LT.0 ) THEN
  426:          INFO = -4
  427:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  428:          INFO = -6
  429:       ELSE
  430:          IF( VALEIG ) THEN
  431:             IF( N.GT.0 .AND. VU.LE.VL )
  432:      $         INFO = -8
  433:          ELSE IF( INDEIG ) THEN
  434:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  435:                INFO = -9
  436:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  437:                INFO = -10
  438:             END IF
  439:          END IF
  440:       END IF
  441:       IF( INFO.EQ.0 ) THEN
  442:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  443:             INFO = -15
  444:          END IF
  445:       END IF
  446: *
  447:       IF( INFO.EQ.0 ) THEN
  448:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  449:          NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  450:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
  451:          WORK( 1 ) = LWKOPT
  452:          RWORK( 1 ) = LRWMIN
  453:          IWORK( 1 ) = LIWMIN
  454: *
  455:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  456:             INFO = -18
  457:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  458:             INFO = -20
  459:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  460:             INFO = -22
  461:          END IF
  462:       END IF
  463: *
  464:       IF( INFO.NE.0 ) THEN
  465:          CALL XERBLA( 'ZHEEVR', -INFO )
  466:          RETURN
  467:       ELSE IF( LQUERY ) THEN
  468:          RETURN
  469:       END IF
  470: *
  471: *     Quick return if possible
  472: *
  473:       M = 0
  474:       IF( N.EQ.0 ) THEN
  475:          WORK( 1 ) = 1
  476:          RETURN
  477:       END IF
  478: *
  479:       IF( N.EQ.1 ) THEN
  480:          WORK( 1 ) = 2
  481:          IF( ALLEIG .OR. INDEIG ) THEN
  482:             M = 1
  483:             W( 1 ) = DBLE( A( 1, 1 ) )
  484:          ELSE
  485:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  486:      $           THEN
  487:                M = 1
  488:                W( 1 ) = DBLE( A( 1, 1 ) )
  489:             END IF
  490:          END IF
  491:          IF( WANTZ ) THEN
  492:             Z( 1, 1 ) = ONE
  493:             ISUPPZ( 1 ) = 1
  494:             ISUPPZ( 2 ) = 1
  495:          END IF
  496:          RETURN
  497:       END IF
  498: *
  499: *     Get machine constants.
  500: *
  501:       SAFMIN = DLAMCH( 'Safe minimum' )
  502:       EPS = DLAMCH( 'Precision' )
  503:       SMLNUM = SAFMIN / EPS
  504:       BIGNUM = ONE / SMLNUM
  505:       RMIN = SQRT( SMLNUM )
  506:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  507: *
  508: *     Scale matrix to allowable range, if necessary.
  509: *
  510:       ISCALE = 0
  511:       ABSTLL = ABSTOL
  512:       IF (VALEIG) THEN
  513:          VLL = VL
  514:          VUU = VU
  515:       END IF
  516:       ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
  517:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  518:          ISCALE = 1
  519:          SIGMA = RMIN / ANRM
  520:       ELSE IF( ANRM.GT.RMAX ) THEN
  521:          ISCALE = 1
  522:          SIGMA = RMAX / ANRM
  523:       END IF
  524:       IF( ISCALE.EQ.1 ) THEN
  525:          IF( LOWER ) THEN
  526:             DO 10 J = 1, N
  527:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  528:    10       CONTINUE
  529:          ELSE
  530:             DO 20 J = 1, N
  531:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  532:    20       CONTINUE
  533:          END IF
  534:          IF( ABSTOL.GT.0 )
  535:      $      ABSTLL = ABSTOL*SIGMA
  536:          IF( VALEIG ) THEN
  537:             VLL = VL*SIGMA
  538:             VUU = VU*SIGMA
  539:          END IF
  540:       END IF
  541: 
  542: *     Initialize indices into workspaces.  Note: The IWORK indices are
  543: *     used only if DSTERF or ZSTEMR fail.
  544: 
  545: *     WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
  546: *     elementary reflectors used in ZHETRD.
  547:       INDTAU = 1
  548: *     INDWK is the starting offset of the remaining complex workspace,
  549: *     and LLWORK is the remaining complex workspace size.
  550:       INDWK = INDTAU + N
  551:       LLWORK = LWORK - INDWK + 1
  552: 
  553: *     RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
  554: *     entries.
  555:       INDRD = 1
  556: *     RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
  557: *     tridiagonal matrix from ZHETRD.
  558:       INDRE = INDRD + N
  559: *     RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
  560: *     -written by ZSTEMR (the DSTERF path copies the diagonal to W).
  561:       INDRDD = INDRE + N
  562: *     RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
  563: *     -written while computing the eigenvalues in DSTERF and ZSTEMR.
  564:       INDREE = INDRDD + N
  565: *     INDRWK is the starting offset of the left-over real workspace, and
  566: *     LLRWORK is the remaining workspace size.
  567:       INDRWK = INDREE + N
  568:       LLRWORK = LRWORK - INDRWK + 1
  569: 
  570: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
  571: *     stores the block indices of each of the M<=N eigenvalues.
  572:       INDIBL = 1
  573: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
  574: *     stores the starting and finishing indices of each block.
  575:       INDISP = INDIBL + N
  576: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
  577: *     that corresponding to eigenvectors that fail to converge in
  578: *     DSTEIN.  This information is discarded; if any fail, the driver
  579: *     returns INFO > 0.
  580:       INDIFL = INDISP + N
  581: *     INDIWO is the offset of the remaining integer workspace.
  582:       INDIWO = INDISP + N
  583: 
  584: *
  585: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  586: *
  587:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
  588:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
  589: *
  590: *     If all eigenvalues are desired
  591: *     then call DSTERF or ZSTEMR and ZUNMTR.
  592: *
  593:       TEST = .FALSE.
  594:       IF( INDEIG ) THEN
  595:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  596:             TEST = .TRUE.
  597:          END IF
  598:       END IF
  599:       IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
  600:          IF( .NOT.WANTZ ) THEN
  601:             CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
  602:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  603:             CALL DSTERF( N, W, RWORK( INDREE ), INFO )
  604:          ELSE
  605:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
  606:             CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
  607: *
  608:             IF (ABSTOL .LE. TWO*N*EPS) THEN
  609:                TRYRAC = .TRUE.
  610:             ELSE
  611:                TRYRAC = .FALSE.
  612:             END IF
  613:             CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
  614:      $                   RWORK( INDREE ), VL, VU, IL, IU, M, W,
  615:      $                   Z, LDZ, N, ISUPPZ, TRYRAC,
  616:      $                   RWORK( INDRWK ), LLRWORK,
  617:      $                   IWORK, LIWORK, INFO )
  618: *
  619: *           Apply unitary matrix used in reduction to tridiagonal
  620: *           form to eigenvectors returned by ZSTEIN.
  621: *
  622:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
  623:                INDWKN = INDWK
  624:                LLWRKN = LWORK - INDWKN + 1
  625:                CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
  626:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
  627:      $                      LLWRKN, IINFO )
  628:             END IF
  629:          END IF
  630: *
  631: *
  632:          IF( INFO.EQ.0 ) THEN
  633:             M = N
  634:             GO TO 30
  635:          END IF
  636:          INFO = 0
  637:       END IF
  638: *
  639: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  640: *     Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
  641: *
  642:       IF( WANTZ ) THEN
  643:          ORDER = 'B'
  644:       ELSE
  645:          ORDER = 'E'
  646:       END IF
  647: 
  648:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  649:      $             RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
  650:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  651:      $             IWORK( INDIWO ), INFO )
  652: *
  653:       IF( WANTZ ) THEN
  654:          CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
  655:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  656:      $                RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
  657:      $                INFO )
  658: *
  659: *        Apply unitary matrix used in reduction to tridiagonal
  660: *        form to eigenvectors returned by ZSTEIN.
  661: *
  662:          INDWKN = INDWK
  663:          LLWRKN = LWORK - INDWKN + 1
  664:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  665:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
  666:       END IF
  667: *
  668: *     If matrix was scaled, then rescale eigenvalues appropriately.
  669: *
  670:    30 CONTINUE
  671:       IF( ISCALE.EQ.1 ) THEN
  672:          IF( INFO.EQ.0 ) THEN
  673:             IMAX = M
  674:          ELSE
  675:             IMAX = INFO - 1
  676:          END IF
  677:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  678:       END IF
  679: *
  680: *     If eigenvalues are not in order, then sort them, along with
  681: *     eigenvectors.
  682: *
  683:       IF( WANTZ ) THEN
  684:          DO 50 J = 1, M - 1
  685:             I = 0
  686:             TMP1 = W( J )
  687:             DO 40 JJ = J + 1, M
  688:                IF( W( JJ ).LT.TMP1 ) THEN
  689:                   I = JJ
  690:                   TMP1 = W( JJ )
  691:                END IF
  692:    40       CONTINUE
  693: *
  694:             IF( I.NE.0 ) THEN
  695:                ITMP1 = IWORK( INDIBL+I-1 )
  696:                W( I ) = W( J )
  697:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  698:                W( J ) = TMP1
  699:                IWORK( INDIBL+J-1 ) = ITMP1
  700:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  701:             END IF
  702:    50    CONTINUE
  703:       END IF
  704: *
  705: *     Set WORK(1) to optimal workspace size.
  706: *
  707:       WORK( 1 ) = LWKOPT
  708:       RWORK( 1 ) = LRWMIN
  709:       IWORK( 1 ) = LIWMIN
  710: *
  711:       RETURN
  712: *
  713: *     End of ZHEEVR
  714: *
  715:       END

CVSweb interface <joel.bertrand@systella.fr>