Annotation of rpl/lapack/lapack/zheevr.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
                      2:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
                      3:      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
                      4: *
1.5       bertrand    5: *  -- LAPACK driver routine (version 3.2.2) --
1.1       bertrand    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand    8: *     June 2010
1.1       bertrand    9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
                     13:      $                   M, N
                     14:       DOUBLE PRECISION   ABSTOL, VL, VU
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       INTEGER            ISUPPZ( * ), IWORK( * )
                     18:       DOUBLE PRECISION   RWORK( * ), W( * )
                     19:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
                     26: *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
                     27: *  be selected by specifying either a range of values or a range of
                     28: *  indices for the desired eigenvalues.
                     29: *
                     30: *  ZHEEVR first reduces the matrix A to tridiagonal form T with a call
                     31: *  to ZHETRD.  Then, whenever possible, ZHEEVR calls ZSTEMR to compute
                     32: *  eigenspectrum using Relatively Robust Representations.  ZSTEMR
                     33: *  computes eigenvalues by the dqds algorithm, while orthogonal
                     34: *  eigenvectors are computed from various "good" L D L^T representations
                     35: *  (also known as Relatively Robust Representations). Gram-Schmidt
                     36: *  orthogonalization is avoided as far as possible. More specifically,
                     37: *  the various steps of the algorithm are as follows.
                     38: *
                     39: *  For each unreduced block (submatrix) of T,
                     40: *     (a) Compute T - sigma I  = L D L^T, so that L and D
                     41: *         define all the wanted eigenvalues to high relative accuracy.
                     42: *         This means that small relative changes in the entries of D and L
                     43: *         cause only small relative changes in the eigenvalues and
                     44: *         eigenvectors. The standard (unfactored) representation of the
                     45: *         tridiagonal matrix T does not have this property in general.
                     46: *     (b) Compute the eigenvalues to suitable accuracy.
                     47: *         If the eigenvectors are desired, the algorithm attains full
                     48: *         accuracy of the computed eigenvalues only right before
                     49: *         the corresponding vectors have to be computed, see steps c) and d).
                     50: *     (c) For each cluster of close eigenvalues, select a new
                     51: *         shift close to the cluster, find a new factorization, and refine
                     52: *         the shifted eigenvalues to suitable accuracy.
                     53: *     (d) For each eigenvalue with a large enough relative separation compute
                     54: *         the corresponding eigenvector by forming a rank revealing twisted
                     55: *         factorization. Go back to (c) for any clusters that remain.
                     56: *
                     57: *  The desired accuracy of the output can be specified by the input
                     58: *  parameter ABSTOL.
                     59: *
                     60: *  For more details, see DSTEMR's documentation and:
                     61: *  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
                     62: *    to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
                     63: *    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
                     64: *  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
                     65: *    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
                     66: *    2004.  Also LAPACK Working Note 154.
                     67: *  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
                     68: *    tridiagonal eigenvalue/eigenvector problem",
                     69: *    Computer Science Division Technical Report No. UCB/CSD-97-971,
                     70: *    UC Berkeley, May 1997.
                     71: *
                     72: *
                     73: *  Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
                     74: *  on machines which conform to the ieee-754 floating point standard.
                     75: *  ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
                     76: *  when partial spectrum requests are made.
                     77: *
                     78: *  Normal execution of ZSTEMR may create NaNs and infinities and
                     79: *  hence may abort due to a floating point exception in environments
                     80: *  which do not handle NaNs and infinities in the ieee standard default
                     81: *  manner.
                     82: *
                     83: *  Arguments
                     84: *  =========
                     85: *
                     86: *  JOBZ    (input) CHARACTER*1
                     87: *          = 'N':  Compute eigenvalues only;
                     88: *          = 'V':  Compute eigenvalues and eigenvectors.
                     89: *
                     90: *  RANGE   (input) CHARACTER*1
                     91: *          = 'A': all eigenvalues will be found.
                     92: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     93: *                 will be found.
                     94: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     95: ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
                     96: ********** ZSTEIN are called
                     97: *
                     98: *  UPLO    (input) CHARACTER*1
                     99: *          = 'U':  Upper triangle of A is stored;
                    100: *          = 'L':  Lower triangle of A is stored.
                    101: *
                    102: *  N       (input) INTEGER
                    103: *          The order of the matrix A.  N >= 0.
                    104: *
                    105: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                    106: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                    107: *          leading N-by-N upper triangular part of A contains the
                    108: *          upper triangular part of the matrix A.  If UPLO = 'L',
                    109: *          the leading N-by-N lower triangular part of A contains
                    110: *          the lower triangular part of the matrix A.
                    111: *          On exit, the lower triangle (if UPLO='L') or the upper
                    112: *          triangle (if UPLO='U') of A, including the diagonal, is
                    113: *          destroyed.
                    114: *
                    115: *  LDA     (input) INTEGER
                    116: *          The leading dimension of the array A.  LDA >= max(1,N).
                    117: *
                    118: *  VL      (input) DOUBLE PRECISION
                    119: *  VU      (input) DOUBLE PRECISION
                    120: *          If RANGE='V', the lower and upper bounds of the interval to
                    121: *          be searched for eigenvalues. VL < VU.
                    122: *          Not referenced if RANGE = 'A' or 'I'.
                    123: *
                    124: *  IL      (input) INTEGER
                    125: *  IU      (input) INTEGER
                    126: *          If RANGE='I', the indices (in ascending order) of the
                    127: *          smallest and largest eigenvalues to be returned.
                    128: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    129: *          Not referenced if RANGE = 'A' or 'V'.
                    130: *
                    131: *  ABSTOL  (input) DOUBLE PRECISION
                    132: *          The absolute error tolerance for the eigenvalues.
                    133: *          An approximate eigenvalue is accepted as converged
                    134: *          when it is determined to lie in an interval [a,b]
                    135: *          of width less than or equal to
                    136: *
                    137: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    138: *
                    139: *          where EPS is the machine precision.  If ABSTOL is less than
                    140: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    141: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    142: *          by reducing A to tridiagonal form.
                    143: *
                    144: *          See "Computing Small Singular Values of Bidiagonal Matrices
                    145: *          with Guaranteed High Relative Accuracy," by Demmel and
                    146: *          Kahan, LAPACK Working Note #3.
                    147: *
                    148: *          If high relative accuracy is important, set ABSTOL to
                    149: *          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
                    150: *          eigenvalues are computed to high relative accuracy when
                    151: *          possible in future releases.  The current code does not
                    152: *          make any guarantees about high relative accuracy, but
                    153: *          furutre releases will. See J. Barlow and J. Demmel,
                    154: *          "Computing Accurate Eigensystems of Scaled Diagonally
                    155: *          Dominant Matrices", LAPACK Working Note #7, for a discussion
                    156: *          of which matrices define their eigenvalues to high relative
                    157: *          accuracy.
                    158: *
                    159: *  M       (output) INTEGER
                    160: *          The total number of eigenvalues found.  0 <= M <= N.
                    161: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    162: *
                    163: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    164: *          The first M elements contain the selected eigenvalues in
                    165: *          ascending order.
                    166: *
                    167: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
                    168: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    169: *          contain the orthonormal eigenvectors of the matrix A
                    170: *          corresponding to the selected eigenvalues, with the i-th
                    171: *          column of Z holding the eigenvector associated with W(i).
                    172: *          If JOBZ = 'N', then Z is not referenced.
                    173: *          Note: the user must ensure that at least max(1,M) columns are
                    174: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    175: *          is not known in advance and an upper bound must be used.
                    176: *
                    177: *  LDZ     (input) INTEGER
                    178: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    179: *          JOBZ = 'V', LDZ >= max(1,N).
                    180: *
                    181: *  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
                    182: *          The support of the eigenvectors in Z, i.e., the indices
                    183: *          indicating the nonzero elements in Z. The i-th eigenvector
                    184: *          is nonzero only in elements ISUPPZ( 2*i-1 ) through
                    185: *          ISUPPZ( 2*i ).
                    186: ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
                    187: *
                    188: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    189: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    190: *
                    191: *  LWORK   (input) INTEGER
                    192: *          The length of the array WORK.  LWORK >= max(1,2*N).
                    193: *          For optimal efficiency, LWORK >= (NB+1)*N,
                    194: *          where NB is the max of the blocksize for ZHETRD and for
                    195: *          ZUNMTR as returned by ILAENV.
                    196: *
                    197: *          If LWORK = -1, then a workspace query is assumed; the routine
                    198: *          only calculates the optimal sizes of the WORK, RWORK and
                    199: *          IWORK arrays, returns these values as the first entries of
                    200: *          the WORK, RWORK and IWORK arrays, and no error message
                    201: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    202: *
                    203: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
                    204: *          On exit, if INFO = 0, RWORK(1) returns the optimal
                    205: *          (and minimal) LRWORK.
                    206: *
                    207: * LRWORK   (input) INTEGER
                    208: *          The length of the array RWORK.  LRWORK >= max(1,24*N).
                    209: *
                    210: *          If LRWORK = -1, then a workspace query is assumed; the
                    211: *          routine only calculates the optimal sizes of the WORK, RWORK
                    212: *          and IWORK arrays, returns these values as the first entries
                    213: *          of the WORK, RWORK and IWORK arrays, and no error message
                    214: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    215: *
                    216: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    217: *          On exit, if INFO = 0, IWORK(1) returns the optimal
                    218: *          (and minimal) LIWORK.
                    219: *
                    220: * LIWORK   (input) INTEGER
                    221: *          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
                    222: *
                    223: *          If LIWORK = -1, then a workspace query is assumed; the
                    224: *          routine only calculates the optimal sizes of the WORK, RWORK
                    225: *          and IWORK arrays, returns these values as the first entries
                    226: *          of the WORK, RWORK and IWORK arrays, and no error message
                    227: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    228: *
                    229: *  INFO    (output) INTEGER
                    230: *          = 0:  successful exit
                    231: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    232: *          > 0:  Internal error
                    233: *
                    234: *  Further Details
                    235: *  ===============
                    236: *
                    237: *  Based on contributions by
                    238: *     Inderjit Dhillon, IBM Almaden, USA
                    239: *     Osni Marques, LBNL/NERSC, USA
                    240: *     Ken Stanley, Computer Science Division, University of
                    241: *       California at Berkeley, USA
                    242: *     Jason Riedy, Computer Science Division, University of
                    243: *       California at Berkeley, USA
                    244: *
                    245: * =====================================================================
                    246: *
                    247: *     .. Parameters ..
                    248:       DOUBLE PRECISION   ZERO, ONE, TWO
                    249:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    250: *     ..
                    251: *     .. Local Scalars ..
                    252:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
                    253:      $                   WANTZ, TRYRAC
                    254:       CHARACTER          ORDER
                    255:       INTEGER            I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
                    256:      $                   INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
                    257:      $                   INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
                    258:      $                   LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
                    259:      $                   LWKOPT, LWMIN, NB, NSPLIT
                    260:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    261:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    262: *     ..
                    263: *     .. External Functions ..
                    264:       LOGICAL            LSAME
                    265:       INTEGER            ILAENV
                    266:       DOUBLE PRECISION   DLAMCH, ZLANSY
                    267:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
                    268: *     ..
                    269: *     .. External Subroutines ..
                    270:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
                    271:      $                   ZHETRD, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
                    272: *     ..
                    273: *     .. Intrinsic Functions ..
                    274:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    275: *     ..
                    276: *     .. Executable Statements ..
                    277: *
                    278: *     Test the input parameters.
                    279: *
                    280:       IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
                    281: *
                    282:       LOWER = LSAME( UPLO, 'L' )
                    283:       WANTZ = LSAME( JOBZ, 'V' )
                    284:       ALLEIG = LSAME( RANGE, 'A' )
                    285:       VALEIG = LSAME( RANGE, 'V' )
                    286:       INDEIG = LSAME( RANGE, 'I' )
                    287: *
                    288:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
                    289:      $         ( LIWORK.EQ.-1 ) )
                    290: *
                    291:       LRWMIN = MAX( 1, 24*N )
                    292:       LIWMIN = MAX( 1, 10*N )
                    293:       LWMIN = MAX( 1, 2*N )
                    294: *
                    295:       INFO = 0
                    296:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    297:          INFO = -1
                    298:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    299:          INFO = -2
                    300:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    301:          INFO = -3
                    302:       ELSE IF( N.LT.0 ) THEN
                    303:          INFO = -4
                    304:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    305:          INFO = -6
                    306:       ELSE
                    307:          IF( VALEIG ) THEN
                    308:             IF( N.GT.0 .AND. VU.LE.VL )
                    309:      $         INFO = -8
                    310:          ELSE IF( INDEIG ) THEN
                    311:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    312:                INFO = -9
                    313:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    314:                INFO = -10
                    315:             END IF
                    316:          END IF
                    317:       END IF
                    318:       IF( INFO.EQ.0 ) THEN
                    319:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    320:             INFO = -15
                    321:          END IF
                    322:       END IF
                    323: *
                    324:       IF( INFO.EQ.0 ) THEN
                    325:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    326:          NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
                    327:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
                    328:          WORK( 1 ) = LWKOPT
                    329:          RWORK( 1 ) = LRWMIN
                    330:          IWORK( 1 ) = LIWMIN
                    331: *
                    332:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    333:             INFO = -18
                    334:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    335:             INFO = -20
                    336:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    337:             INFO = -22
                    338:          END IF
                    339:       END IF
                    340: *
                    341:       IF( INFO.NE.0 ) THEN
                    342:          CALL XERBLA( 'ZHEEVR', -INFO )
                    343:          RETURN
                    344:       ELSE IF( LQUERY ) THEN
                    345:          RETURN
                    346:       END IF
                    347: *
                    348: *     Quick return if possible
                    349: *
                    350:       M = 0
                    351:       IF( N.EQ.0 ) THEN
                    352:          WORK( 1 ) = 1
                    353:          RETURN
                    354:       END IF
                    355: *
                    356:       IF( N.EQ.1 ) THEN
                    357:          WORK( 1 ) = 2
                    358:          IF( ALLEIG .OR. INDEIG ) THEN
                    359:             M = 1
                    360:             W( 1 ) = DBLE( A( 1, 1 ) )
                    361:          ELSE
                    362:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
                    363:      $           THEN
                    364:                M = 1
                    365:                W( 1 ) = DBLE( A( 1, 1 ) )
                    366:             END IF
                    367:          END IF
1.5       bertrand  368:          IF( WANTZ ) THEN
                    369:             Z( 1, 1 ) = ONE
                    370:             ISUPPZ( 1 ) = 1
                    371:             ISUPPZ( 2 ) = 1
                    372:          END IF
1.1       bertrand  373:          RETURN
                    374:       END IF
                    375: *
                    376: *     Get machine constants.
                    377: *
                    378:       SAFMIN = DLAMCH( 'Safe minimum' )
                    379:       EPS = DLAMCH( 'Precision' )
                    380:       SMLNUM = SAFMIN / EPS
                    381:       BIGNUM = ONE / SMLNUM
                    382:       RMIN = SQRT( SMLNUM )
                    383:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    384: *
                    385: *     Scale matrix to allowable range, if necessary.
                    386: *
                    387:       ISCALE = 0
                    388:       ABSTLL = ABSTOL
                    389:       IF (VALEIG) THEN
                    390:          VLL = VL
                    391:          VUU = VU
                    392:       END IF
                    393:       ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
                    394:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    395:          ISCALE = 1
                    396:          SIGMA = RMIN / ANRM
                    397:       ELSE IF( ANRM.GT.RMAX ) THEN
                    398:          ISCALE = 1
                    399:          SIGMA = RMAX / ANRM
                    400:       END IF
                    401:       IF( ISCALE.EQ.1 ) THEN
                    402:          IF( LOWER ) THEN
                    403:             DO 10 J = 1, N
                    404:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    405:    10       CONTINUE
                    406:          ELSE
                    407:             DO 20 J = 1, N
                    408:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
                    409:    20       CONTINUE
                    410:          END IF
                    411:          IF( ABSTOL.GT.0 )
                    412:      $      ABSTLL = ABSTOL*SIGMA
                    413:          IF( VALEIG ) THEN
                    414:             VLL = VL*SIGMA
                    415:             VUU = VU*SIGMA
                    416:          END IF
                    417:       END IF
                    418: 
                    419: *     Initialize indices into workspaces.  Note: The IWORK indices are
                    420: *     used only if DSTERF or ZSTEMR fail.
                    421: 
                    422: *     WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
                    423: *     elementary reflectors used in ZHETRD.
                    424:       INDTAU = 1
                    425: *     INDWK is the starting offset of the remaining complex workspace,
                    426: *     and LLWORK is the remaining complex workspace size.
                    427:       INDWK = INDTAU + N
                    428:       LLWORK = LWORK - INDWK + 1
                    429: 
                    430: *     RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
                    431: *     entries.
                    432:       INDRD = 1
                    433: *     RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
                    434: *     tridiagonal matrix from ZHETRD.
                    435:       INDRE = INDRD + N
                    436: *     RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
                    437: *     -written by ZSTEMR (the DSTERF path copies the diagonal to W).
                    438:       INDRDD = INDRE + N
                    439: *     RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
                    440: *     -written while computing the eigenvalues in DSTERF and ZSTEMR.
                    441:       INDREE = INDRDD + N
                    442: *     INDRWK is the starting offset of the left-over real workspace, and
                    443: *     LLRWORK is the remaining workspace size.
                    444:       INDRWK = INDREE + N
                    445:       LLRWORK = LRWORK - INDRWK + 1
                    446: 
                    447: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
                    448: *     stores the block indices of each of the M<=N eigenvalues.
                    449:       INDIBL = 1
                    450: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
                    451: *     stores the starting and finishing indices of each block.
                    452:       INDISP = INDIBL + N
                    453: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
                    454: *     that corresponding to eigenvectors that fail to converge in
                    455: *     DSTEIN.  This information is discarded; if any fail, the driver
                    456: *     returns INFO > 0.
                    457:       INDIFL = INDISP + N
                    458: *     INDIWO is the offset of the remaining integer workspace.
                    459:       INDIWO = INDISP + N
                    460: 
                    461: *
                    462: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
                    463: *
                    464:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
                    465:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
                    466: *
                    467: *     If all eigenvalues are desired
                    468: *     then call DSTERF or ZSTEMR and ZUNMTR.
                    469: *
                    470:       TEST = .FALSE.
                    471:       IF( INDEIG ) THEN
                    472:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    473:             TEST = .TRUE.
                    474:          END IF
                    475:       END IF
                    476:       IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
                    477:          IF( .NOT.WANTZ ) THEN
                    478:             CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
                    479:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
                    480:             CALL DSTERF( N, W, RWORK( INDREE ), INFO )
                    481:          ELSE
                    482:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
                    483:             CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
                    484: *
                    485:             IF (ABSTOL .LE. TWO*N*EPS) THEN
                    486:                TRYRAC = .TRUE.
                    487:             ELSE
                    488:                TRYRAC = .FALSE.
                    489:             END IF
                    490:             CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
                    491:      $                   RWORK( INDREE ), VL, VU, IL, IU, M, W,
                    492:      $                   Z, LDZ, N, ISUPPZ, TRYRAC,
                    493:      $                   RWORK( INDRWK ), LLRWORK,
                    494:      $                   IWORK, LIWORK, INFO )
                    495: *
                    496: *           Apply unitary matrix used in reduction to tridiagonal
                    497: *           form to eigenvectors returned by ZSTEIN.
                    498: *
                    499:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
                    500:                INDWKN = INDWK
                    501:                LLWRKN = LWORK - INDWKN + 1
                    502:                CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
                    503:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
                    504:      $                      LLWRKN, IINFO )
                    505:             END IF
                    506:          END IF
                    507: *
                    508: *
                    509:          IF( INFO.EQ.0 ) THEN
                    510:             M = N
                    511:             GO TO 30
                    512:          END IF
                    513:          INFO = 0
                    514:       END IF
                    515: *
                    516: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    517: *     Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
                    518: *
                    519:       IF( WANTZ ) THEN
                    520:          ORDER = 'B'
                    521:       ELSE
                    522:          ORDER = 'E'
                    523:       END IF
                    524: 
                    525:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    526:      $             RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
                    527:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    528:      $             IWORK( INDIWO ), INFO )
                    529: *
                    530:       IF( WANTZ ) THEN
                    531:          CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
                    532:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    533:      $                RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
                    534:      $                INFO )
                    535: *
                    536: *        Apply unitary matrix used in reduction to tridiagonal
                    537: *        form to eigenvectors returned by ZSTEIN.
                    538: *
                    539:          INDWKN = INDWK
                    540:          LLWRKN = LWORK - INDWKN + 1
                    541:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    542:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
                    543:       END IF
                    544: *
                    545: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    546: *
                    547:    30 CONTINUE
                    548:       IF( ISCALE.EQ.1 ) THEN
                    549:          IF( INFO.EQ.0 ) THEN
                    550:             IMAX = M
                    551:          ELSE
                    552:             IMAX = INFO - 1
                    553:          END IF
                    554:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    555:       END IF
                    556: *
                    557: *     If eigenvalues are not in order, then sort them, along with
                    558: *     eigenvectors.
                    559: *
                    560:       IF( WANTZ ) THEN
                    561:          DO 50 J = 1, M - 1
                    562:             I = 0
                    563:             TMP1 = W( J )
                    564:             DO 40 JJ = J + 1, M
                    565:                IF( W( JJ ).LT.TMP1 ) THEN
                    566:                   I = JJ
                    567:                   TMP1 = W( JJ )
                    568:                END IF
                    569:    40       CONTINUE
                    570: *
                    571:             IF( I.NE.0 ) THEN
                    572:                ITMP1 = IWORK( INDIBL+I-1 )
                    573:                W( I ) = W( J )
                    574:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    575:                W( J ) = TMP1
                    576:                IWORK( INDIBL+J-1 ) = ITMP1
                    577:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    578:             END IF
                    579:    50    CONTINUE
                    580:       END IF
                    581: *
                    582: *     Set WORK(1) to optimal workspace size.
                    583: *
                    584:       WORK( 1 ) = LWKOPT
                    585:       RWORK( 1 ) = LRWMIN
                    586:       IWORK( 1 ) = LIWMIN
                    587: *
                    588:       RETURN
                    589: *
                    590: *     End of ZHEEVR
                    591: *
                    592:       END

CVSweb interface <joel.bertrand@systella.fr>