Annotation of rpl/lapack/lapack/zheevr.f, revision 1.10

1.10    ! bertrand    1: *> \brief <b> ZHEEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHEEVR + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevr.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevr.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevr.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
        !            22: *                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
        !            23: *                          RWORK, LRWORK, IWORK, LIWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          JOBZ, RANGE, UPLO
        !            27: *       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
        !            28: *      $                   M, N
        !            29: *       DOUBLE PRECISION   ABSTOL, VL, VU
        !            30: *       ..
        !            31: *       .. Array Arguments ..
        !            32: *       INTEGER            ISUPPZ( * ), IWORK( * )
        !            33: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            34: *       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
        !            35: *       ..
        !            36: *  
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
        !            44: *> of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
        !            45: *> be selected by specifying either a range of values or a range of
        !            46: *> indices for the desired eigenvalues.
        !            47: *>
        !            48: *> ZHEEVR first reduces the matrix A to tridiagonal form T with a call
        !            49: *> to ZHETRD.  Then, whenever possible, ZHEEVR calls ZSTEMR to compute
        !            50: *> eigenspectrum using Relatively Robust Representations.  ZSTEMR
        !            51: *> computes eigenvalues by the dqds algorithm, while orthogonal
        !            52: *> eigenvectors are computed from various "good" L D L^T representations
        !            53: *> (also known as Relatively Robust Representations). Gram-Schmidt
        !            54: *> orthogonalization is avoided as far as possible. More specifically,
        !            55: *> the various steps of the algorithm are as follows.
        !            56: *>
        !            57: *> For each unreduced block (submatrix) of T,
        !            58: *>    (a) Compute T - sigma I  = L D L^T, so that L and D
        !            59: *>        define all the wanted eigenvalues to high relative accuracy.
        !            60: *>        This means that small relative changes in the entries of D and L
        !            61: *>        cause only small relative changes in the eigenvalues and
        !            62: *>        eigenvectors. The standard (unfactored) representation of the
        !            63: *>        tridiagonal matrix T does not have this property in general.
        !            64: *>    (b) Compute the eigenvalues to suitable accuracy.
        !            65: *>        If the eigenvectors are desired, the algorithm attains full
        !            66: *>        accuracy of the computed eigenvalues only right before
        !            67: *>        the corresponding vectors have to be computed, see steps c) and d).
        !            68: *>    (c) For each cluster of close eigenvalues, select a new
        !            69: *>        shift close to the cluster, find a new factorization, and refine
        !            70: *>        the shifted eigenvalues to suitable accuracy.
        !            71: *>    (d) For each eigenvalue with a large enough relative separation compute
        !            72: *>        the corresponding eigenvector by forming a rank revealing twisted
        !            73: *>        factorization. Go back to (c) for any clusters that remain.
        !            74: *>
        !            75: *> The desired accuracy of the output can be specified by the input
        !            76: *> parameter ABSTOL.
        !            77: *>
        !            78: *> For more details, see DSTEMR's documentation and:
        !            79: *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
        !            80: *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
        !            81: *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
        !            82: *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
        !            83: *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
        !            84: *>   2004.  Also LAPACK Working Note 154.
        !            85: *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
        !            86: *>   tridiagonal eigenvalue/eigenvector problem",
        !            87: *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
        !            88: *>   UC Berkeley, May 1997.
        !            89: *>
        !            90: *>
        !            91: *> Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
        !            92: *> on machines which conform to the ieee-754 floating point standard.
        !            93: *> ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
        !            94: *> when partial spectrum requests are made.
        !            95: *>
        !            96: *> Normal execution of ZSTEMR may create NaNs and infinities and
        !            97: *> hence may abort due to a floating point exception in environments
        !            98: *> which do not handle NaNs and infinities in the ieee standard default
        !            99: *> manner.
        !           100: *> \endverbatim
        !           101: *
        !           102: *  Arguments:
        !           103: *  ==========
        !           104: *
        !           105: *> \param[in] JOBZ
        !           106: *> \verbatim
        !           107: *>          JOBZ is CHARACTER*1
        !           108: *>          = 'N':  Compute eigenvalues only;
        !           109: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] RANGE
        !           113: *> \verbatim
        !           114: *>          RANGE is CHARACTER*1
        !           115: *>          = 'A': all eigenvalues will be found.
        !           116: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !           117: *>                 will be found.
        !           118: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
        !           119: *>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
        !           120: *>          ZSTEIN are called
        !           121: *> \endverbatim
        !           122: *>
        !           123: *> \param[in] UPLO
        !           124: *> \verbatim
        !           125: *>          UPLO is CHARACTER*1
        !           126: *>          = 'U':  Upper triangle of A is stored;
        !           127: *>          = 'L':  Lower triangle of A is stored.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[in] N
        !           131: *> \verbatim
        !           132: *>          N is INTEGER
        !           133: *>          The order of the matrix A.  N >= 0.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in,out] A
        !           137: *> \verbatim
        !           138: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !           139: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
        !           140: *>          leading N-by-N upper triangular part of A contains the
        !           141: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !           142: *>          the leading N-by-N lower triangular part of A contains
        !           143: *>          the lower triangular part of the matrix A.
        !           144: *>          On exit, the lower triangle (if UPLO='L') or the upper
        !           145: *>          triangle (if UPLO='U') of A, including the diagonal, is
        !           146: *>          destroyed.
        !           147: *> \endverbatim
        !           148: *>
        !           149: *> \param[in] LDA
        !           150: *> \verbatim
        !           151: *>          LDA is INTEGER
        !           152: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[in] VL
        !           156: *> \verbatim
        !           157: *>          VL is DOUBLE PRECISION
        !           158: *> \endverbatim
        !           159: *>
        !           160: *> \param[in] VU
        !           161: *> \verbatim
        !           162: *>          VU is DOUBLE PRECISION
        !           163: *>          If RANGE='V', the lower and upper bounds of the interval to
        !           164: *>          be searched for eigenvalues. VL < VU.
        !           165: *>          Not referenced if RANGE = 'A' or 'I'.
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[in] IL
        !           169: *> \verbatim
        !           170: *>          IL is INTEGER
        !           171: *> \endverbatim
        !           172: *>
        !           173: *> \param[in] IU
        !           174: *> \verbatim
        !           175: *>          IU is INTEGER
        !           176: *>          If RANGE='I', the indices (in ascending order) of the
        !           177: *>          smallest and largest eigenvalues to be returned.
        !           178: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           179: *>          Not referenced if RANGE = 'A' or 'V'.
        !           180: *> \endverbatim
        !           181: *>
        !           182: *> \param[in] ABSTOL
        !           183: *> \verbatim
        !           184: *>          ABSTOL is DOUBLE PRECISION
        !           185: *>          The absolute error tolerance for the eigenvalues.
        !           186: *>          An approximate eigenvalue is accepted as converged
        !           187: *>          when it is determined to lie in an interval [a,b]
        !           188: *>          of width less than or equal to
        !           189: *>
        !           190: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           191: *>
        !           192: *>          where EPS is the machine precision.  If ABSTOL is less than
        !           193: *>          or equal to zero, then  EPS*|T|  will be used in its place,
        !           194: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           195: *>          by reducing A to tridiagonal form.
        !           196: *>
        !           197: *>          See "Computing Small Singular Values of Bidiagonal Matrices
        !           198: *>          with Guaranteed High Relative Accuracy," by Demmel and
        !           199: *>          Kahan, LAPACK Working Note #3.
        !           200: *>
        !           201: *>          If high relative accuracy is important, set ABSTOL to
        !           202: *>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
        !           203: *>          eigenvalues are computed to high relative accuracy when
        !           204: *>          possible in future releases.  The current code does not
        !           205: *>          make any guarantees about high relative accuracy, but
        !           206: *>          furutre releases will. See J. Barlow and J. Demmel,
        !           207: *>          "Computing Accurate Eigensystems of Scaled Diagonally
        !           208: *>          Dominant Matrices", LAPACK Working Note #7, for a discussion
        !           209: *>          of which matrices define their eigenvalues to high relative
        !           210: *>          accuracy.
        !           211: *> \endverbatim
        !           212: *>
        !           213: *> \param[out] M
        !           214: *> \verbatim
        !           215: *>          M is INTEGER
        !           216: *>          The total number of eigenvalues found.  0 <= M <= N.
        !           217: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           218: *> \endverbatim
        !           219: *>
        !           220: *> \param[out] W
        !           221: *> \verbatim
        !           222: *>          W is DOUBLE PRECISION array, dimension (N)
        !           223: *>          The first M elements contain the selected eigenvalues in
        !           224: *>          ascending order.
        !           225: *> \endverbatim
        !           226: *>
        !           227: *> \param[out] Z
        !           228: *> \verbatim
        !           229: *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
        !           230: *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
        !           231: *>          contain the orthonormal eigenvectors of the matrix A
        !           232: *>          corresponding to the selected eigenvalues, with the i-th
        !           233: *>          column of Z holding the eigenvector associated with W(i).
        !           234: *>          If JOBZ = 'N', then Z is not referenced.
        !           235: *>          Note: the user must ensure that at least max(1,M) columns are
        !           236: *>          supplied in the array Z; if RANGE = 'V', the exact value of M
        !           237: *>          is not known in advance and an upper bound must be used.
        !           238: *> \endverbatim
        !           239: *>
        !           240: *> \param[in] LDZ
        !           241: *> \verbatim
        !           242: *>          LDZ is INTEGER
        !           243: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           244: *>          JOBZ = 'V', LDZ >= max(1,N).
        !           245: *> \endverbatim
        !           246: *>
        !           247: *> \param[out] ISUPPZ
        !           248: *> \verbatim
        !           249: *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
        !           250: *>          The support of the eigenvectors in Z, i.e., the indices
        !           251: *>          indicating the nonzero elements in Z. The i-th eigenvector
        !           252: *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
        !           253: *>          ISUPPZ( 2*i ).
        !           254: *>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
        !           255: *> \endverbatim
        !           256: *>
        !           257: *> \param[out] WORK
        !           258: *> \verbatim
        !           259: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           260: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           261: *> \endverbatim
        !           262: *>
        !           263: *> \param[in] LWORK
        !           264: *> \verbatim
        !           265: *>          LWORK is INTEGER
        !           266: *>          The length of the array WORK.  LWORK >= max(1,2*N).
        !           267: *>          For optimal efficiency, LWORK >= (NB+1)*N,
        !           268: *>          where NB is the max of the blocksize for ZHETRD and for
        !           269: *>          ZUNMTR as returned by ILAENV.
        !           270: *>
        !           271: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           272: *>          only calculates the optimal sizes of the WORK, RWORK and
        !           273: *>          IWORK arrays, returns these values as the first entries of
        !           274: *>          the WORK, RWORK and IWORK arrays, and no error message
        !           275: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           276: *> \endverbatim
        !           277: *>
        !           278: *> \param[out] RWORK
        !           279: *> \verbatim
        !           280: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
        !           281: *>          On exit, if INFO = 0, RWORK(1) returns the optimal
        !           282: *>          (and minimal) LRWORK.
        !           283: *> \endverbatim
        !           284: *>
        !           285: *> \param[in] LRWORK
        !           286: *> \verbatim
        !           287: *>          LRWORK is INTEGER
        !           288: *>          The length of the array RWORK.  LRWORK >= max(1,24*N).
        !           289: *>
        !           290: *>          If LRWORK = -1, then a workspace query is assumed; the
        !           291: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           292: *>          and IWORK arrays, returns these values as the first entries
        !           293: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           294: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           295: *> \endverbatim
        !           296: *>
        !           297: *> \param[out] IWORK
        !           298: *> \verbatim
        !           299: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           300: *>          On exit, if INFO = 0, IWORK(1) returns the optimal
        !           301: *>          (and minimal) LIWORK.
        !           302: *> \endverbatim
        !           303: *>
        !           304: *> \param[in] LIWORK
        !           305: *> \verbatim
        !           306: *>          LIWORK is INTEGER
        !           307: *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
        !           308: *>
        !           309: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           310: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           311: *>          and IWORK arrays, returns these values as the first entries
        !           312: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           313: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           314: *> \endverbatim
        !           315: *>
        !           316: *> \param[out] INFO
        !           317: *> \verbatim
        !           318: *>          INFO is INTEGER
        !           319: *>          = 0:  successful exit
        !           320: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           321: *>          > 0:  Internal error
        !           322: *> \endverbatim
        !           323: *
        !           324: *  Authors:
        !           325: *  ========
        !           326: *
        !           327: *> \author Univ. of Tennessee 
        !           328: *> \author Univ. of California Berkeley 
        !           329: *> \author Univ. of Colorado Denver 
        !           330: *> \author NAG Ltd. 
        !           331: *
        !           332: *> \date November 2011
        !           333: *
        !           334: *> \ingroup complex16HEeigen
        !           335: *
        !           336: *> \par Contributors:
        !           337: *  ==================
        !           338: *>
        !           339: *>     Inderjit Dhillon, IBM Almaden, USA \n
        !           340: *>     Osni Marques, LBNL/NERSC, USA \n
        !           341: *>     Ken Stanley, Computer Science Division, University of
        !           342: *>       California at Berkeley, USA \n
        !           343: *>     Jason Riedy, Computer Science Division, University of
        !           344: *>       California at Berkeley, USA \n
        !           345: *>
        !           346: *  =====================================================================
1.1       bertrand  347:       SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
                    348:      $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
                    349:      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
                    350: *
1.10    ! bertrand  351: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  352: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    353: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  354: *     November 2011
1.1       bertrand  355: *
                    356: *     .. Scalar Arguments ..
                    357:       CHARACTER          JOBZ, RANGE, UPLO
                    358:       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LRWORK, LWORK,
                    359:      $                   M, N
                    360:       DOUBLE PRECISION   ABSTOL, VL, VU
                    361: *     ..
                    362: *     .. Array Arguments ..
                    363:       INTEGER            ISUPPZ( * ), IWORK( * )
                    364:       DOUBLE PRECISION   RWORK( * ), W( * )
                    365:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
                    366: *     ..
                    367: *
1.9       bertrand  368: *  =====================================================================
1.1       bertrand  369: *
                    370: *     .. Parameters ..
                    371:       DOUBLE PRECISION   ZERO, ONE, TWO
                    372:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    373: *     ..
                    374: *     .. Local Scalars ..
                    375:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
                    376:      $                   WANTZ, TRYRAC
                    377:       CHARACTER          ORDER
                    378:       INTEGER            I, IEEEOK, IINFO, IMAX, INDIBL, INDIFL, INDISP,
                    379:      $                   INDIWO, INDRD, INDRDD, INDRE, INDREE, INDRWK,
                    380:      $                   INDTAU, INDWK, INDWKN, ISCALE, ITMP1, J, JJ,
                    381:      $                   LIWMIN, LLWORK, LLRWORK, LLWRKN, LRWMIN,
                    382:      $                   LWKOPT, LWMIN, NB, NSPLIT
                    383:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    384:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    385: *     ..
                    386: *     .. External Functions ..
                    387:       LOGICAL            LSAME
                    388:       INTEGER            ILAENV
                    389:       DOUBLE PRECISION   DLAMCH, ZLANSY
                    390:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANSY
                    391: *     ..
                    392: *     .. External Subroutines ..
                    393:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
                    394:      $                   ZHETRD, ZSTEMR, ZSTEIN, ZSWAP, ZUNMTR
                    395: *     ..
                    396: *     .. Intrinsic Functions ..
                    397:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    398: *     ..
                    399: *     .. Executable Statements ..
                    400: *
                    401: *     Test the input parameters.
                    402: *
                    403:       IEEEOK = ILAENV( 10, 'ZHEEVR', 'N', 1, 2, 3, 4 )
                    404: *
                    405:       LOWER = LSAME( UPLO, 'L' )
                    406:       WANTZ = LSAME( JOBZ, 'V' )
                    407:       ALLEIG = LSAME( RANGE, 'A' )
                    408:       VALEIG = LSAME( RANGE, 'V' )
                    409:       INDEIG = LSAME( RANGE, 'I' )
                    410: *
                    411:       LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR.
                    412:      $         ( LIWORK.EQ.-1 ) )
                    413: *
                    414:       LRWMIN = MAX( 1, 24*N )
                    415:       LIWMIN = MAX( 1, 10*N )
                    416:       LWMIN = MAX( 1, 2*N )
                    417: *
                    418:       INFO = 0
                    419:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    420:          INFO = -1
                    421:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    422:          INFO = -2
                    423:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    424:          INFO = -3
                    425:       ELSE IF( N.LT.0 ) THEN
                    426:          INFO = -4
                    427:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    428:          INFO = -6
                    429:       ELSE
                    430:          IF( VALEIG ) THEN
                    431:             IF( N.GT.0 .AND. VU.LE.VL )
                    432:      $         INFO = -8
                    433:          ELSE IF( INDEIG ) THEN
                    434:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    435:                INFO = -9
                    436:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    437:                INFO = -10
                    438:             END IF
                    439:          END IF
                    440:       END IF
                    441:       IF( INFO.EQ.0 ) THEN
                    442:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    443:             INFO = -15
                    444:          END IF
                    445:       END IF
                    446: *
                    447:       IF( INFO.EQ.0 ) THEN
                    448:          NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    449:          NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
                    450:          LWKOPT = MAX( ( NB+1 )*N, LWMIN )
                    451:          WORK( 1 ) = LWKOPT
                    452:          RWORK( 1 ) = LRWMIN
                    453:          IWORK( 1 ) = LIWMIN
                    454: *
                    455:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    456:             INFO = -18
                    457:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    458:             INFO = -20
                    459:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    460:             INFO = -22
                    461:          END IF
                    462:       END IF
                    463: *
                    464:       IF( INFO.NE.0 ) THEN
                    465:          CALL XERBLA( 'ZHEEVR', -INFO )
                    466:          RETURN
                    467:       ELSE IF( LQUERY ) THEN
                    468:          RETURN
                    469:       END IF
                    470: *
                    471: *     Quick return if possible
                    472: *
                    473:       M = 0
                    474:       IF( N.EQ.0 ) THEN
                    475:          WORK( 1 ) = 1
                    476:          RETURN
                    477:       END IF
                    478: *
                    479:       IF( N.EQ.1 ) THEN
                    480:          WORK( 1 ) = 2
                    481:          IF( ALLEIG .OR. INDEIG ) THEN
                    482:             M = 1
                    483:             W( 1 ) = DBLE( A( 1, 1 ) )
                    484:          ELSE
                    485:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
                    486:      $           THEN
                    487:                M = 1
                    488:                W( 1 ) = DBLE( A( 1, 1 ) )
                    489:             END IF
                    490:          END IF
1.5       bertrand  491:          IF( WANTZ ) THEN
                    492:             Z( 1, 1 ) = ONE
                    493:             ISUPPZ( 1 ) = 1
                    494:             ISUPPZ( 2 ) = 1
                    495:          END IF
1.1       bertrand  496:          RETURN
                    497:       END IF
                    498: *
                    499: *     Get machine constants.
                    500: *
                    501:       SAFMIN = DLAMCH( 'Safe minimum' )
                    502:       EPS = DLAMCH( 'Precision' )
                    503:       SMLNUM = SAFMIN / EPS
                    504:       BIGNUM = ONE / SMLNUM
                    505:       RMIN = SQRT( SMLNUM )
                    506:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    507: *
                    508: *     Scale matrix to allowable range, if necessary.
                    509: *
                    510:       ISCALE = 0
                    511:       ABSTLL = ABSTOL
                    512:       IF (VALEIG) THEN
                    513:          VLL = VL
                    514:          VUU = VU
                    515:       END IF
                    516:       ANRM = ZLANSY( 'M', UPLO, N, A, LDA, RWORK )
                    517:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    518:          ISCALE = 1
                    519:          SIGMA = RMIN / ANRM
                    520:       ELSE IF( ANRM.GT.RMAX ) THEN
                    521:          ISCALE = 1
                    522:          SIGMA = RMAX / ANRM
                    523:       END IF
                    524:       IF( ISCALE.EQ.1 ) THEN
                    525:          IF( LOWER ) THEN
                    526:             DO 10 J = 1, N
                    527:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    528:    10       CONTINUE
                    529:          ELSE
                    530:             DO 20 J = 1, N
                    531:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
                    532:    20       CONTINUE
                    533:          END IF
                    534:          IF( ABSTOL.GT.0 )
                    535:      $      ABSTLL = ABSTOL*SIGMA
                    536:          IF( VALEIG ) THEN
                    537:             VLL = VL*SIGMA
                    538:             VUU = VU*SIGMA
                    539:          END IF
                    540:       END IF
                    541: 
                    542: *     Initialize indices into workspaces.  Note: The IWORK indices are
                    543: *     used only if DSTERF or ZSTEMR fail.
                    544: 
                    545: *     WORK(INDTAU:INDTAU+N-1) stores the complex scalar factors of the
                    546: *     elementary reflectors used in ZHETRD.
                    547:       INDTAU = 1
                    548: *     INDWK is the starting offset of the remaining complex workspace,
                    549: *     and LLWORK is the remaining complex workspace size.
                    550:       INDWK = INDTAU + N
                    551:       LLWORK = LWORK - INDWK + 1
                    552: 
                    553: *     RWORK(INDRD:INDRD+N-1) stores the real tridiagonal's diagonal
                    554: *     entries.
                    555:       INDRD = 1
                    556: *     RWORK(INDRE:INDRE+N-1) stores the off-diagonal entries of the
                    557: *     tridiagonal matrix from ZHETRD.
                    558:       INDRE = INDRD + N
                    559: *     RWORK(INDRDD:INDRDD+N-1) is a copy of the diagonal entries over
                    560: *     -written by ZSTEMR (the DSTERF path copies the diagonal to W).
                    561:       INDRDD = INDRE + N
                    562: *     RWORK(INDREE:INDREE+N-1) is a copy of the off-diagonal entries over
                    563: *     -written while computing the eigenvalues in DSTERF and ZSTEMR.
                    564:       INDREE = INDRDD + N
                    565: *     INDRWK is the starting offset of the left-over real workspace, and
                    566: *     LLRWORK is the remaining workspace size.
                    567:       INDRWK = INDREE + N
                    568:       LLRWORK = LRWORK - INDRWK + 1
                    569: 
                    570: *     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
                    571: *     stores the block indices of each of the M<=N eigenvalues.
                    572:       INDIBL = 1
                    573: *     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
                    574: *     stores the starting and finishing indices of each block.
                    575:       INDISP = INDIBL + N
                    576: *     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
                    577: *     that corresponding to eigenvectors that fail to converge in
                    578: *     DSTEIN.  This information is discarded; if any fail, the driver
                    579: *     returns INFO > 0.
                    580:       INDIFL = INDISP + N
                    581: *     INDIWO is the offset of the remaining integer workspace.
                    582:       INDIWO = INDISP + N
                    583: 
                    584: *
                    585: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
                    586: *
                    587:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDRD ), RWORK( INDRE ),
                    588:      $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
                    589: *
                    590: *     If all eigenvalues are desired
                    591: *     then call DSTERF or ZSTEMR and ZUNMTR.
                    592: *
                    593:       TEST = .FALSE.
                    594:       IF( INDEIG ) THEN
                    595:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    596:             TEST = .TRUE.
                    597:          END IF
                    598:       END IF
                    599:       IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
                    600:          IF( .NOT.WANTZ ) THEN
                    601:             CALL DCOPY( N, RWORK( INDRD ), 1, W, 1 )
                    602:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
                    603:             CALL DSTERF( N, W, RWORK( INDREE ), INFO )
                    604:          ELSE
                    605:             CALL DCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 )
                    606:             CALL DCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 )
                    607: *
                    608:             IF (ABSTOL .LE. TWO*N*EPS) THEN
                    609:                TRYRAC = .TRUE.
                    610:             ELSE
                    611:                TRYRAC = .FALSE.
                    612:             END IF
                    613:             CALL ZSTEMR( JOBZ, 'A', N, RWORK( INDRDD ),
                    614:      $                   RWORK( INDREE ), VL, VU, IL, IU, M, W,
                    615:      $                   Z, LDZ, N, ISUPPZ, TRYRAC,
                    616:      $                   RWORK( INDRWK ), LLRWORK,
                    617:      $                   IWORK, LIWORK, INFO )
                    618: *
                    619: *           Apply unitary matrix used in reduction to tridiagonal
                    620: *           form to eigenvectors returned by ZSTEIN.
                    621: *
                    622:             IF( WANTZ .AND. INFO.EQ.0 ) THEN
                    623:                INDWKN = INDWK
                    624:                LLWRKN = LWORK - INDWKN + 1
                    625:                CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA,
                    626:      $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
                    627:      $                      LLWRKN, IINFO )
                    628:             END IF
                    629:          END IF
                    630: *
                    631: *
                    632:          IF( INFO.EQ.0 ) THEN
                    633:             M = N
                    634:             GO TO 30
                    635:          END IF
                    636:          INFO = 0
                    637:       END IF
                    638: *
                    639: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    640: *     Also call DSTEBZ and ZSTEIN if ZSTEMR fails.
                    641: *
                    642:       IF( WANTZ ) THEN
                    643:          ORDER = 'B'
                    644:       ELSE
                    645:          ORDER = 'E'
                    646:       END IF
                    647: 
                    648:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    649:      $             RWORK( INDRD ), RWORK( INDRE ), M, NSPLIT, W,
                    650:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    651:      $             IWORK( INDIWO ), INFO )
                    652: *
                    653:       IF( WANTZ ) THEN
                    654:          CALL ZSTEIN( N, RWORK( INDRD ), RWORK( INDRE ), M, W,
                    655:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    656:      $                RWORK( INDRWK ), IWORK( INDIWO ), IWORK( INDIFL ),
                    657:      $                INFO )
                    658: *
                    659: *        Apply unitary matrix used in reduction to tridiagonal
                    660: *        form to eigenvectors returned by ZSTEIN.
                    661: *
                    662:          INDWKN = INDWK
                    663:          LLWRKN = LWORK - INDWKN + 1
                    664:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    665:      $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
                    666:       END IF
                    667: *
                    668: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    669: *
                    670:    30 CONTINUE
                    671:       IF( ISCALE.EQ.1 ) THEN
                    672:          IF( INFO.EQ.0 ) THEN
                    673:             IMAX = M
                    674:          ELSE
                    675:             IMAX = INFO - 1
                    676:          END IF
                    677:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    678:       END IF
                    679: *
                    680: *     If eigenvalues are not in order, then sort them, along with
                    681: *     eigenvectors.
                    682: *
                    683:       IF( WANTZ ) THEN
                    684:          DO 50 J = 1, M - 1
                    685:             I = 0
                    686:             TMP1 = W( J )
                    687:             DO 40 JJ = J + 1, M
                    688:                IF( W( JJ ).LT.TMP1 ) THEN
                    689:                   I = JJ
                    690:                   TMP1 = W( JJ )
                    691:                END IF
                    692:    40       CONTINUE
                    693: *
                    694:             IF( I.NE.0 ) THEN
                    695:                ITMP1 = IWORK( INDIBL+I-1 )
                    696:                W( I ) = W( J )
                    697:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    698:                W( J ) = TMP1
                    699:                IWORK( INDIBL+J-1 ) = ITMP1
                    700:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    701:             END IF
                    702:    50    CONTINUE
                    703:       END IF
                    704: *
                    705: *     Set WORK(1) to optimal workspace size.
                    706: *
                    707:       WORK( 1 ) = LWKOPT
                    708:       RWORK( 1 ) = LRWMIN
                    709:       IWORK( 1 ) = LIWMIN
                    710: *
                    711:       RETURN
                    712: *
                    713: *     End of ZHEEVR
                    714: *
                    715:       END

CVSweb interface <joel.bertrand@systella.fr>