Annotation of rpl/lapack/lapack/zheevd_2stage.f, revision 1.1

1.1     ! bertrand    1: *> \brief <b> ZHEEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
        !             2: *
        !             3: *  @precisions fortran z -> s d c
        !             4: *
        !             5: *  =========== DOCUMENTATION ===========
        !             6: *
        !             7: * Online html documentation available at
        !             8: *            http://www.netlib.org/lapack/explore-html/
        !             9: *
        !            10: *> \htmlonly
        !            11: *> Download ZHEEVD_2STAGE + dependencies
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevd_2stage.f">
        !            13: *> [TGZ]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevd_2stage.f">
        !            15: *> [ZIP]</a>
        !            16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevd_2stage.f">
        !            17: *> [TXT]</a>
        !            18: *> \endhtmlonly
        !            19: *
        !            20: *  Definition:
        !            21: *  ===========
        !            22: *
        !            23: *       SUBROUTINE ZHEEVD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK,
        !            24: *                          RWORK, LRWORK, IWORK, LIWORK, INFO )
        !            25: *
        !            26: *       IMPLICIT NONE
        !            27: *
        !            28: *       .. Scalar Arguments ..
        !            29: *       CHARACTER          JOBZ, UPLO
        !            30: *       INTEGER            INFO, LDA, LIWORK, LRWORK, LWORK, N
        !            31: *       ..
        !            32: *       .. Array Arguments ..
        !            33: *       INTEGER            IWORK( * )
        !            34: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            35: *       COMPLEX*16         A( LDA, * ), WORK( * )
        !            36: *       ..
        !            37: *
        !            38: *
        !            39: *> \par Purpose:
        !            40: *  =============
        !            41: *>
        !            42: *> \verbatim
        !            43: *>
        !            44: *> ZHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
        !            45: *> complex Hermitian matrix A using the 2stage technique for
        !            46: *> the reduction to tridiagonal.  If eigenvectors are desired, it uses a
        !            47: *> divide and conquer algorithm.
        !            48: *>
        !            49: *> The divide and conquer algorithm makes very mild assumptions about
        !            50: *> floating point arithmetic. It will work on machines with a guard
        !            51: *> digit in add/subtract, or on those binary machines without guard
        !            52: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            53: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            54: *> without guard digits, but we know of none.
        !            55: *> \endverbatim
        !            56: *
        !            57: *  Arguments:
        !            58: *  ==========
        !            59: *
        !            60: *> \param[in] JOBZ
        !            61: *> \verbatim
        !            62: *>          JOBZ is CHARACTER*1
        !            63: *>          = 'N':  Compute eigenvalues only;
        !            64: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            65: *>                  Not available in this release.
        !            66: *> \endverbatim
        !            67: *>
        !            68: *> \param[in] UPLO
        !            69: *> \verbatim
        !            70: *>          UPLO is CHARACTER*1
        !            71: *>          = 'U':  Upper triangle of A is stored;
        !            72: *>          = 'L':  Lower triangle of A is stored.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] N
        !            76: *> \verbatim
        !            77: *>          N is INTEGER
        !            78: *>          The order of the matrix A.  N >= 0.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in,out] A
        !            82: *> \verbatim
        !            83: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !            84: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
        !            85: *>          leading N-by-N upper triangular part of A contains the
        !            86: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !            87: *>          the leading N-by-N lower triangular part of A contains
        !            88: *>          the lower triangular part of the matrix A.
        !            89: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            90: *>          orthonormal eigenvectors of the matrix A.
        !            91: *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
        !            92: *>          or the upper triangle (if UPLO='U') of A, including the
        !            93: *>          diagonal, is destroyed.
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[in] LDA
        !            97: *> \verbatim
        !            98: *>          LDA is INTEGER
        !            99: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[out] W
        !           103: *> \verbatim
        !           104: *>          W is DOUBLE PRECISION array, dimension (N)
        !           105: *>          If INFO = 0, the eigenvalues in ascending order.
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[out] WORK
        !           109: *> \verbatim
        !           110: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           111: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           112: *> \endverbatim
        !           113: *>
        !           114: *> \param[in] LWORK
        !           115: *> \verbatim
        !           116: *>          LWORK is INTEGER
        !           117: *>          The dimension of the array WORK.
        !           118: *>          If N <= 1,               LWORK must be at least 1.
        !           119: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
        !           120: *>                                   LWORK = MAX(1, dimension) where
        !           121: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + N+1
        !           122: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
        !           123: *>                                               + max(2*KD*KD, KD*NTHREADS) 
        !           124: *>                                               + (KD+1)*N + N+1
        !           125: *>                                   where KD is the blocking size of the reduction,
        !           126: *>                                   FACTOPTNB is the blocking used by the QR or LQ
        !           127: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
        !           128: *>                                   NTHREADS is the number of threads used when
        !           129: *>                                   openMP compilation is enabled, otherwise =1.
        !           130: *>          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2
        !           131: *>
        !           132: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           133: *>          only calculates the optimal sizes of the WORK, RWORK and
        !           134: *>          IWORK arrays, returns these values as the first entries of
        !           135: *>          the WORK, RWORK and IWORK arrays, and no error message
        !           136: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[out] RWORK
        !           140: *> \verbatim
        !           141: *>          RWORK is DOUBLE PRECISION array,
        !           142: *>                                         dimension (LRWORK)
        !           143: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[in] LRWORK
        !           147: *> \verbatim
        !           148: *>          LRWORK is INTEGER
        !           149: *>          The dimension of the array RWORK.
        !           150: *>          If N <= 1,                LRWORK must be at least 1.
        !           151: *>          If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
        !           152: *>          If JOBZ  = 'V' and N > 1, LRWORK must be at least
        !           153: *>                         1 + 5*N + 2*N**2.
        !           154: *>
        !           155: *>          If LRWORK = -1, then a workspace query is assumed; the
        !           156: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           157: *>          and IWORK arrays, returns these values as the first entries
        !           158: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           159: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           160: *> \endverbatim
        !           161: *>
        !           162: *> \param[out] IWORK
        !           163: *> \verbatim
        !           164: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           165: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[in] LIWORK
        !           169: *> \verbatim
        !           170: *>          LIWORK is INTEGER
        !           171: *>          The dimension of the array IWORK.
        !           172: *>          If N <= 1,                LIWORK must be at least 1.
        !           173: *>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
        !           174: *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
        !           175: *>
        !           176: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           177: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           178: *>          and IWORK arrays, returns these values as the first entries
        !           179: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           180: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           181: *> \endverbatim
        !           182: *>
        !           183: *> \param[out] INFO
        !           184: *> \verbatim
        !           185: *>          INFO is INTEGER
        !           186: *>          = 0:  successful exit
        !           187: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           188: *>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
        !           189: *>                to converge; i off-diagonal elements of an intermediate
        !           190: *>                tridiagonal form did not converge to zero;
        !           191: *>                if INFO = i and JOBZ = 'V', then the algorithm failed
        !           192: *>                to compute an eigenvalue while working on the submatrix
        !           193: *>                lying in rows and columns INFO/(N+1) through
        !           194: *>                mod(INFO,N+1).
        !           195: *> \endverbatim
        !           196: *
        !           197: *  Authors:
        !           198: *  ========
        !           199: *
        !           200: *> \author Univ. of Tennessee
        !           201: *> \author Univ. of California Berkeley
        !           202: *> \author Univ. of Colorado Denver
        !           203: *> \author NAG Ltd.
        !           204: *
        !           205: *> \date December 2016
        !           206: *
        !           207: *> \ingroup complex16HEeigen
        !           208: *
        !           209: *> \par Further Details:
        !           210: *  =====================
        !           211: *>
        !           212: *>  Modified description of INFO. Sven, 16 Feb 05.
        !           213: *
        !           214: *> \par Contributors:
        !           215: *  ==================
        !           216: *>
        !           217: *> Jeff Rutter, Computer Science Division, University of California
        !           218: *> at Berkeley, USA
        !           219: *>
        !           220: *> \par Further Details:
        !           221: *  =====================
        !           222: *>
        !           223: *> \verbatim
        !           224: *>
        !           225: *>  All details about the 2stage techniques are available in:
        !           226: *>
        !           227: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
        !           228: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
        !           229: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
        !           230: *>  of 2011 International Conference for High Performance Computing,
        !           231: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
        !           232: *>  Article 8 , 11 pages.
        !           233: *>  http://doi.acm.org/10.1145/2063384.2063394
        !           234: *>
        !           235: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
        !           236: *>  An improved parallel singular value algorithm and its implementation 
        !           237: *>  for multicore hardware, In Proceedings of 2013 International Conference
        !           238: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
        !           239: *>  Denver, Colorado, USA, 2013.
        !           240: *>  Article 90, 12 pages.
        !           241: *>  http://doi.acm.org/10.1145/2503210.2503292
        !           242: *>
        !           243: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
        !           244: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
        !           245: *>  calculations based on fine-grained memory aware tasks.
        !           246: *>  International Journal of High Performance Computing Applications.
        !           247: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
        !           248: *>  http://hpc.sagepub.com/content/28/2/196 
        !           249: *>
        !           250: *> \endverbatim
        !           251: *
        !           252: *  =====================================================================
        !           253:       SUBROUTINE ZHEEVD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK,
        !           254:      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
        !           255: *
        !           256:       IMPLICIT NONE
        !           257: *
        !           258: *  -- LAPACK driver routine (version 3.7.0) --
        !           259: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           260: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           261: *     December 2016
        !           262: *
        !           263: *     .. Scalar Arguments ..
        !           264:       CHARACTER          JOBZ, UPLO
        !           265:       INTEGER            INFO, LDA, LIWORK, LRWORK, LWORK, N
        !           266: *     ..
        !           267: *     .. Array Arguments ..
        !           268:       INTEGER            IWORK( * )
        !           269:       DOUBLE PRECISION   RWORK( * ), W( * )
        !           270:       COMPLEX*16         A( LDA, * ), WORK( * )
        !           271: *     ..
        !           272: *
        !           273: *  =====================================================================
        !           274: *
        !           275: *     .. Parameters ..
        !           276:       DOUBLE PRECISION   ZERO, ONE
        !           277:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           278:       COMPLEX*16         CONE
        !           279:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
        !           280: *     ..
        !           281: *     .. Local Scalars ..
        !           282:       LOGICAL            LOWER, LQUERY, WANTZ
        !           283:       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
        !           284:      $                   INDWRK, ISCALE, LIWMIN, LLRWK, LLWORK,
        !           285:      $                   LLWRK2, LRWMIN, LWMIN,
        !           286:      $                   LHTRD, LWTRD, KD, IB, INDHOUS
        !           287: 
        !           288: 
        !           289:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
        !           290:      $                   SMLNUM
        !           291: *     ..
        !           292: *     .. External Functions ..
        !           293:       LOGICAL            LSAME
        !           294:       INTEGER            ILAENV
        !           295:       DOUBLE PRECISION   DLAMCH, ZLANHE
        !           296:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
        !           297: *     ..
        !           298: *     .. External Subroutines ..
        !           299:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZLACPY, ZLASCL,
        !           300:      $                   ZSTEDC, ZUNMTR, ZHETRD_2STAGE
        !           301: *     ..
        !           302: *     .. Intrinsic Functions ..
        !           303:       INTRINSIC          DBLE, MAX, SQRT 
        !           304: *     ..
        !           305: *     .. Executable Statements ..
        !           306: *
        !           307: *     Test the input parameters.
        !           308: *
        !           309:       WANTZ = LSAME( JOBZ, 'V' )
        !           310:       LOWER = LSAME( UPLO, 'L' )
        !           311:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           312: *
        !           313:       INFO = 0
        !           314:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
        !           315:          INFO = -1
        !           316:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
        !           317:          INFO = -2
        !           318:       ELSE IF( N.LT.0 ) THEN
        !           319:          INFO = -3
        !           320:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           321:          INFO = -5
        !           322:       END IF
        !           323: *
        !           324:       IF( INFO.EQ.0 ) THEN
        !           325:          IF( N.LE.1 ) THEN
        !           326:             LWMIN = 1
        !           327:             LRWMIN = 1
        !           328:             LIWMIN = 1
        !           329:          ELSE
        !           330:             KD    = ILAENV( 17, 'ZHETRD_2STAGE', JOBZ, N, -1, -1, -1 )
        !           331:             IB    = ILAENV( 18, 'ZHETRD_2STAGE', JOBZ, N, KD, -1, -1 )
        !           332:             LHTRD = ILAENV( 19, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
        !           333:             LWTRD = ILAENV( 20, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
        !           334:             IF( WANTZ ) THEN
        !           335:                LWMIN = 2*N + N*N
        !           336:                LRWMIN = 1 + 5*N + 2*N**2
        !           337:                LIWMIN = 3 + 5*N
        !           338:             ELSE
        !           339:                LWMIN = N + 1 + LHTRD + LWTRD
        !           340:                LRWMIN = N
        !           341:                LIWMIN = 1
        !           342:             END IF
        !           343:          END IF
        !           344:          WORK( 1 )  = LWMIN
        !           345:          RWORK( 1 ) = LRWMIN
        !           346:          IWORK( 1 ) = LIWMIN
        !           347: *
        !           348:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           349:             INFO = -8
        !           350:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
        !           351:             INFO = -10
        !           352:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           353:             INFO = -12
        !           354:          END IF
        !           355:       END IF
        !           356: *
        !           357:       IF( INFO.NE.0 ) THEN
        !           358:          CALL XERBLA( 'ZHEEVD_2STAGE', -INFO )
        !           359:          RETURN
        !           360:       ELSE IF( LQUERY ) THEN
        !           361:          RETURN
        !           362:       END IF
        !           363: *
        !           364: *     Quick return if possible
        !           365: *
        !           366:       IF( N.EQ.0 )
        !           367:      $   RETURN
        !           368: *
        !           369:       IF( N.EQ.1 ) THEN
        !           370:          W( 1 ) = DBLE( A( 1, 1 ) )
        !           371:          IF( WANTZ )
        !           372:      $      A( 1, 1 ) = CONE
        !           373:          RETURN
        !           374:       END IF
        !           375: *
        !           376: *     Get machine constants.
        !           377: *
        !           378:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           379:       EPS    = DLAMCH( 'Precision' )
        !           380:       SMLNUM = SAFMIN / EPS
        !           381:       BIGNUM = ONE / SMLNUM
        !           382:       RMIN   = SQRT( SMLNUM )
        !           383:       RMAX   = SQRT( BIGNUM )
        !           384: *
        !           385: *     Scale matrix to allowable range, if necessary.
        !           386: *
        !           387:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
        !           388:       ISCALE = 0
        !           389:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           390:          ISCALE = 1
        !           391:          SIGMA = RMIN / ANRM
        !           392:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           393:          ISCALE = 1
        !           394:          SIGMA = RMAX / ANRM
        !           395:       END IF
        !           396:       IF( ISCALE.EQ.1 )
        !           397:      $   CALL ZLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
        !           398: *
        !           399: *     Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
        !           400: *
        !           401:       INDE    = 1
        !           402:       INDRWK  = INDE + N
        !           403:       LLRWK   = LRWORK - INDRWK + 1
        !           404:       INDTAU  = 1
        !           405:       INDHOUS = INDTAU + N
        !           406:       INDWRK  = INDHOUS + LHTRD
        !           407:       LLWORK  = LWORK - INDWRK + 1
        !           408:       INDWK2  = INDWRK + N*N
        !           409:       LLWRK2  = LWORK - INDWK2 + 1
        !           410: *
        !           411:       CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, W, RWORK( INDE ),
        !           412:      $                    WORK( INDTAU ), WORK( INDHOUS ), LHTRD, 
        !           413:      $                    WORK( INDWRK ), LLWORK, IINFO )
        !           414: *
        !           415: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
        !           416: *     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
        !           417: *     tridiagonal matrix, then call ZUNMTR to multiply it to the
        !           418: *     Householder transformations represented as Householder vectors in
        !           419: *     A.
        !           420: *
        !           421:       IF( .NOT.WANTZ ) THEN
        !           422:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
        !           423:       ELSE
        !           424:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
        !           425:      $                WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
        !           426:      $                IWORK, LIWORK, INFO )
        !           427:          CALL ZUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
        !           428:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
        !           429:          CALL ZLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
        !           430:       END IF
        !           431: *
        !           432: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           433: *
        !           434:       IF( ISCALE.EQ.1 ) THEN
        !           435:          IF( INFO.EQ.0 ) THEN
        !           436:             IMAX = N
        !           437:          ELSE
        !           438:             IMAX = INFO - 1
        !           439:          END IF
        !           440:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
        !           441:       END IF
        !           442: *
        !           443:       WORK( 1 )  = LWMIN
        !           444:       RWORK( 1 ) = LRWMIN
        !           445:       IWORK( 1 ) = LIWMIN
        !           446: *
        !           447:       RETURN
        !           448: *
        !           449: *     End of ZHEEVD_2STAGE
        !           450: *
        !           451:       END

CVSweb interface <joel.bertrand@systella.fr>