File:  [local] / rpl / lapack / lapack / zheevd.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:33 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
    2:      $                   LRWORK, IWORK, LIWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOBZ, UPLO
   11:       INTEGER            INFO, LDA, LIWORK, LRWORK, LWORK, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            IWORK( * )
   15:       DOUBLE PRECISION   RWORK( * ), W( * )
   16:       COMPLEX*16         A( LDA, * ), WORK( * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
   23: *  complex Hermitian matrix A.  If eigenvectors are desired, it uses a
   24: *  divide and conquer algorithm.
   25: *
   26: *  The divide and conquer algorithm makes very mild assumptions about
   27: *  floating point arithmetic. It will work on machines with a guard
   28: *  digit in add/subtract, or on those binary machines without guard
   29: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   30: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
   31: *  without guard digits, but we know of none.
   32: *
   33: *  Arguments
   34: *  =========
   35: *
   36: *  JOBZ    (input) CHARACTER*1
   37: *          = 'N':  Compute eigenvalues only;
   38: *          = 'V':  Compute eigenvalues and eigenvectors.
   39: *
   40: *  UPLO    (input) CHARACTER*1
   41: *          = 'U':  Upper triangle of A is stored;
   42: *          = 'L':  Lower triangle of A is stored.
   43: *
   44: *  N       (input) INTEGER
   45: *          The order of the matrix A.  N >= 0.
   46: *
   47: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
   48: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
   49: *          leading N-by-N upper triangular part of A contains the
   50: *          upper triangular part of the matrix A.  If UPLO = 'L',
   51: *          the leading N-by-N lower triangular part of A contains
   52: *          the lower triangular part of the matrix A.
   53: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
   54: *          orthonormal eigenvectors of the matrix A.
   55: *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
   56: *          or the upper triangle (if UPLO='U') of A, including the
   57: *          diagonal, is destroyed.
   58: *
   59: *  LDA     (input) INTEGER
   60: *          The leading dimension of the array A.  LDA >= max(1,N).
   61: *
   62: *  W       (output) DOUBLE PRECISION array, dimension (N)
   63: *          If INFO = 0, the eigenvalues in ascending order.
   64: *
   65: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
   66: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   67: *
   68: *  LWORK   (input) INTEGER
   69: *          The length of the array WORK.
   70: *          If N <= 1,                LWORK must be at least 1.
   71: *          If JOBZ  = 'N' and N > 1, LWORK must be at least N + 1.
   72: *          If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2.
   73: *
   74: *          If LWORK = -1, then a workspace query is assumed; the routine
   75: *          only calculates the optimal sizes of the WORK, RWORK and
   76: *          IWORK arrays, returns these values as the first entries of
   77: *          the WORK, RWORK and IWORK arrays, and no error message
   78: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
   79: *
   80: *  RWORK   (workspace/output) DOUBLE PRECISION array,
   81: *                                         dimension (LRWORK)
   82: *          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
   83: *
   84: *  LRWORK  (input) INTEGER
   85: *          The dimension of the array RWORK.
   86: *          If N <= 1,                LRWORK must be at least 1.
   87: *          If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
   88: *          If JOBZ  = 'V' and N > 1, LRWORK must be at least
   89: *                         1 + 5*N + 2*N**2.
   90: *
   91: *          If LRWORK = -1, then a workspace query is assumed; the
   92: *          routine only calculates the optimal sizes of the WORK, RWORK
   93: *          and IWORK arrays, returns these values as the first entries
   94: *          of the WORK, RWORK and IWORK arrays, and no error message
   95: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
   96: *
   97: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
   98: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
   99: *
  100: *  LIWORK  (input) INTEGER
  101: *          The dimension of the array IWORK.
  102: *          If N <= 1,                LIWORK must be at least 1.
  103: *          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
  104: *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
  105: *
  106: *          If LIWORK = -1, then a workspace query is assumed; the
  107: *          routine only calculates the optimal sizes of the WORK, RWORK
  108: *          and IWORK arrays, returns these values as the first entries
  109: *          of the WORK, RWORK and IWORK arrays, and no error message
  110: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  111: *
  112: *  INFO    (output) INTEGER
  113: *          = 0:  successful exit
  114: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  115: *          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
  116: *                to converge; i off-diagonal elements of an intermediate
  117: *                tridiagonal form did not converge to zero;
  118: *                if INFO = i and JOBZ = 'V', then the algorithm failed
  119: *                to compute an eigenvalue while working on the submatrix
  120: *                lying in rows and columns INFO/(N+1) through
  121: *                mod(INFO,N+1).
  122: *
  123: *  Further Details
  124: *  ===============
  125: *
  126: *  Based on contributions by
  127: *     Jeff Rutter, Computer Science Division, University of California
  128: *     at Berkeley, USA
  129: *
  130: *  Modified description of INFO. Sven, 16 Feb 05.
  131: *  =====================================================================
  132: *
  133: *     .. Parameters ..
  134:       DOUBLE PRECISION   ZERO, ONE
  135:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  136:       COMPLEX*16         CONE
  137:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
  138: *     ..
  139: *     .. Local Scalars ..
  140:       LOGICAL            LOWER, LQUERY, WANTZ
  141:       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
  142:      $                   INDWRK, ISCALE, LIOPT, LIWMIN, LLRWK, LLWORK,
  143:      $                   LLWRK2, LOPT, LROPT, LRWMIN, LWMIN
  144:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  145:      $                   SMLNUM
  146: *     ..
  147: *     .. External Functions ..
  148:       LOGICAL            LSAME
  149:       INTEGER            ILAENV
  150:       DOUBLE PRECISION   DLAMCH, ZLANHE
  151:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
  152: *     ..
  153: *     .. External Subroutines ..
  154:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZHETRD, ZLACPY, ZLASCL,
  155:      $                   ZSTEDC, ZUNMTR
  156: *     ..
  157: *     .. Intrinsic Functions ..
  158:       INTRINSIC          MAX, SQRT
  159: *     ..
  160: *     .. Executable Statements ..
  161: *
  162: *     Test the input parameters.
  163: *
  164:       WANTZ = LSAME( JOBZ, 'V' )
  165:       LOWER = LSAME( UPLO, 'L' )
  166:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  167: *
  168:       INFO = 0
  169:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  170:          INFO = -1
  171:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  172:          INFO = -2
  173:       ELSE IF( N.LT.0 ) THEN
  174:          INFO = -3
  175:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  176:          INFO = -5
  177:       END IF
  178: *
  179:       IF( INFO.EQ.0 ) THEN
  180:          IF( N.LE.1 ) THEN
  181:             LWMIN = 1
  182:             LRWMIN = 1
  183:             LIWMIN = 1
  184:             LOPT = LWMIN
  185:             LROPT = LRWMIN
  186:             LIOPT = LIWMIN
  187:          ELSE
  188:             IF( WANTZ ) THEN
  189:                LWMIN = 2*N + N*N
  190:                LRWMIN = 1 + 5*N + 2*N**2
  191:                LIWMIN = 3 + 5*N
  192:             ELSE
  193:                LWMIN = N + 1
  194:                LRWMIN = N
  195:                LIWMIN = 1
  196:             END IF
  197:             LOPT = MAX( LWMIN, N +
  198:      $                  ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 ) )
  199:             LROPT = LRWMIN
  200:             LIOPT = LIWMIN
  201:          END IF
  202:          WORK( 1 ) = LOPT
  203:          RWORK( 1 ) = LROPT
  204:          IWORK( 1 ) = LIOPT
  205: *
  206:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  207:             INFO = -8
  208:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  209:             INFO = -10
  210:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  211:             INFO = -12
  212:          END IF
  213:       END IF
  214: *
  215:       IF( INFO.NE.0 ) THEN
  216:          CALL XERBLA( 'ZHEEVD', -INFO )
  217:          RETURN
  218:       ELSE IF( LQUERY ) THEN
  219:          RETURN
  220:       END IF
  221: *
  222: *     Quick return if possible
  223: *
  224:       IF( N.EQ.0 )
  225:      $   RETURN
  226: *
  227:       IF( N.EQ.1 ) THEN
  228:          W( 1 ) = A( 1, 1 )
  229:          IF( WANTZ )
  230:      $      A( 1, 1 ) = CONE
  231:          RETURN
  232:       END IF
  233: *
  234: *     Get machine constants.
  235: *
  236:       SAFMIN = DLAMCH( 'Safe minimum' )
  237:       EPS = DLAMCH( 'Precision' )
  238:       SMLNUM = SAFMIN / EPS
  239:       BIGNUM = ONE / SMLNUM
  240:       RMIN = SQRT( SMLNUM )
  241:       RMAX = SQRT( BIGNUM )
  242: *
  243: *     Scale matrix to allowable range, if necessary.
  244: *
  245:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
  246:       ISCALE = 0
  247:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  248:          ISCALE = 1
  249:          SIGMA = RMIN / ANRM
  250:       ELSE IF( ANRM.GT.RMAX ) THEN
  251:          ISCALE = 1
  252:          SIGMA = RMAX / ANRM
  253:       END IF
  254:       IF( ISCALE.EQ.1 )
  255:      $   CALL ZLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
  256: *
  257: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  258: *
  259:       INDE = 1
  260:       INDTAU = 1
  261:       INDWRK = INDTAU + N
  262:       INDRWK = INDE + N
  263:       INDWK2 = INDWRK + N*N
  264:       LLWORK = LWORK - INDWRK + 1
  265:       LLWRK2 = LWORK - INDWK2 + 1
  266:       LLRWK = LRWORK - INDRWK + 1
  267:       CALL ZHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
  268:      $             WORK( INDWRK ), LLWORK, IINFO )
  269: *
  270: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
  271: *     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
  272: *     tridiagonal matrix, then call ZUNMTR to multiply it to the
  273: *     Householder transformations represented as Householder vectors in
  274: *     A.
  275: *
  276:       IF( .NOT.WANTZ ) THEN
  277:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
  278:       ELSE
  279:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
  280:      $                WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
  281:      $                IWORK, LIWORK, INFO )
  282:          CALL ZUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
  283:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
  284:          CALL ZLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
  285:       END IF
  286: *
  287: *     If matrix was scaled, then rescale eigenvalues appropriately.
  288: *
  289:       IF( ISCALE.EQ.1 ) THEN
  290:          IF( INFO.EQ.0 ) THEN
  291:             IMAX = N
  292:          ELSE
  293:             IMAX = INFO - 1
  294:          END IF
  295:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  296:       END IF
  297: *
  298:       WORK( 1 ) = LOPT
  299:       RWORK( 1 ) = LROPT
  300:       IWORK( 1 ) = LIOPT
  301: *
  302:       RETURN
  303: *
  304: *     End of ZHEEVD
  305: *
  306:       END

CVSweb interface <joel.bertrand@systella.fr>