Annotation of rpl/lapack/lapack/zheevd.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHEEVD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
        !            22: *                          LRWORK, IWORK, LIWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBZ, UPLO
        !            26: *       INTEGER            INFO, LDA, LIWORK, LRWORK, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IWORK( * )
        !            30: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            31: *       COMPLEX*16         A( LDA, * ), WORK( * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
        !            41: *> complex Hermitian matrix A.  If eigenvectors are desired, it uses a
        !            42: *> divide and conquer algorithm.
        !            43: *>
        !            44: *> The divide and conquer algorithm makes very mild assumptions about
        !            45: *> floating point arithmetic. It will work on machines with a guard
        !            46: *> digit in add/subtract, or on those binary machines without guard
        !            47: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            48: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            49: *> without guard digits, but we know of none.
        !            50: *> \endverbatim
        !            51: *
        !            52: *  Arguments:
        !            53: *  ==========
        !            54: *
        !            55: *> \param[in] JOBZ
        !            56: *> \verbatim
        !            57: *>          JOBZ is CHARACTER*1
        !            58: *>          = 'N':  Compute eigenvalues only;
        !            59: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            60: *> \endverbatim
        !            61: *>
        !            62: *> \param[in] UPLO
        !            63: *> \verbatim
        !            64: *>          UPLO is CHARACTER*1
        !            65: *>          = 'U':  Upper triangle of A is stored;
        !            66: *>          = 'L':  Lower triangle of A is stored.
        !            67: *> \endverbatim
        !            68: *>
        !            69: *> \param[in] N
        !            70: *> \verbatim
        !            71: *>          N is INTEGER
        !            72: *>          The order of the matrix A.  N >= 0.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in,out] A
        !            76: *> \verbatim
        !            77: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !            78: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
        !            79: *>          leading N-by-N upper triangular part of A contains the
        !            80: *>          upper triangular part of the matrix A.  If UPLO = 'L',
        !            81: *>          the leading N-by-N lower triangular part of A contains
        !            82: *>          the lower triangular part of the matrix A.
        !            83: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            84: *>          orthonormal eigenvectors of the matrix A.
        !            85: *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
        !            86: *>          or the upper triangle (if UPLO='U') of A, including the
        !            87: *>          diagonal, is destroyed.
        !            88: *> \endverbatim
        !            89: *>
        !            90: *> \param[in] LDA
        !            91: *> \verbatim
        !            92: *>          LDA is INTEGER
        !            93: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[out] W
        !            97: *> \verbatim
        !            98: *>          W is DOUBLE PRECISION array, dimension (N)
        !            99: *>          If INFO = 0, the eigenvalues in ascending order.
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[out] WORK
        !           103: *> \verbatim
        !           104: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           105: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[in] LWORK
        !           109: *> \verbatim
        !           110: *>          LWORK is INTEGER
        !           111: *>          The length of the array WORK.
        !           112: *>          If N <= 1,                LWORK must be at least 1.
        !           113: *>          If JOBZ  = 'N' and N > 1, LWORK must be at least N + 1.
        !           114: *>          If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2.
        !           115: *>
        !           116: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           117: *>          only calculates the optimal sizes of the WORK, RWORK and
        !           118: *>          IWORK arrays, returns these values as the first entries of
        !           119: *>          the WORK, RWORK and IWORK arrays, and no error message
        !           120: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           121: *> \endverbatim
        !           122: *>
        !           123: *> \param[out] RWORK
        !           124: *> \verbatim
        !           125: *>          RWORK is DOUBLE PRECISION array,
        !           126: *>                                         dimension (LRWORK)
        !           127: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[in] LRWORK
        !           131: *> \verbatim
        !           132: *>          LRWORK is INTEGER
        !           133: *>          The dimension of the array RWORK.
        !           134: *>          If N <= 1,                LRWORK must be at least 1.
        !           135: *>          If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
        !           136: *>          If JOBZ  = 'V' and N > 1, LRWORK must be at least
        !           137: *>                         1 + 5*N + 2*N**2.
        !           138: *>
        !           139: *>          If LRWORK = -1, then a workspace query is assumed; the
        !           140: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           141: *>          and IWORK arrays, returns these values as the first entries
        !           142: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           143: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[out] IWORK
        !           147: *> \verbatim
        !           148: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           149: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[in] LIWORK
        !           153: *> \verbatim
        !           154: *>          LIWORK is INTEGER
        !           155: *>          The dimension of the array IWORK.
        !           156: *>          If N <= 1,                LIWORK must be at least 1.
        !           157: *>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
        !           158: *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
        !           159: *>
        !           160: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           161: *>          routine only calculates the optimal sizes of the WORK, RWORK
        !           162: *>          and IWORK arrays, returns these values as the first entries
        !           163: *>          of the WORK, RWORK and IWORK arrays, and no error message
        !           164: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           165: *> \endverbatim
        !           166: *>
        !           167: *> \param[out] INFO
        !           168: *> \verbatim
        !           169: *>          INFO is INTEGER
        !           170: *>          = 0:  successful exit
        !           171: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           172: *>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
        !           173: *>                to converge; i off-diagonal elements of an intermediate
        !           174: *>                tridiagonal form did not converge to zero;
        !           175: *>                if INFO = i and JOBZ = 'V', then the algorithm failed
        !           176: *>                to compute an eigenvalue while working on the submatrix
        !           177: *>                lying in rows and columns INFO/(N+1) through
        !           178: *>                mod(INFO,N+1).
        !           179: *> \endverbatim
        !           180: *
        !           181: *  Authors:
        !           182: *  ========
        !           183: *
        !           184: *> \author Univ. of Tennessee 
        !           185: *> \author Univ. of California Berkeley 
        !           186: *> \author Univ. of Colorado Denver 
        !           187: *> \author NAG Ltd. 
        !           188: *
        !           189: *> \date November 2011
        !           190: *
        !           191: *> \ingroup complex16HEeigen
        !           192: *
        !           193: *> \par Further Details:
        !           194: *  =====================
        !           195: *>
        !           196: *>  Modified description of INFO. Sven, 16 Feb 05.
        !           197: *
        !           198: *> \par Contributors:
        !           199: *  ==================
        !           200: *>
        !           201: *> Jeff Rutter, Computer Science Division, University of California
        !           202: *> at Berkeley, USA
        !           203: *>
        !           204: *  =====================================================================
1.1       bertrand  205:       SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
                    206:      $                   LRWORK, IWORK, LIWORK, INFO )
                    207: *
1.8     ! bertrand  208: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  209: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    210: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  211: *     November 2011
1.1       bertrand  212: *
                    213: *     .. Scalar Arguments ..
                    214:       CHARACTER          JOBZ, UPLO
                    215:       INTEGER            INFO, LDA, LIWORK, LRWORK, LWORK, N
                    216: *     ..
                    217: *     .. Array Arguments ..
                    218:       INTEGER            IWORK( * )
                    219:       DOUBLE PRECISION   RWORK( * ), W( * )
                    220:       COMPLEX*16         A( LDA, * ), WORK( * )
                    221: *     ..
                    222: *
                    223: *  =====================================================================
                    224: *
                    225: *     .. Parameters ..
                    226:       DOUBLE PRECISION   ZERO, ONE
                    227:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    228:       COMPLEX*16         CONE
                    229:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
                    230: *     ..
                    231: *     .. Local Scalars ..
                    232:       LOGICAL            LOWER, LQUERY, WANTZ
                    233:       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
                    234:      $                   INDWRK, ISCALE, LIOPT, LIWMIN, LLRWK, LLWORK,
                    235:      $                   LLWRK2, LOPT, LROPT, LRWMIN, LWMIN
                    236:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    237:      $                   SMLNUM
                    238: *     ..
                    239: *     .. External Functions ..
                    240:       LOGICAL            LSAME
                    241:       INTEGER            ILAENV
                    242:       DOUBLE PRECISION   DLAMCH, ZLANHE
                    243:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
                    244: *     ..
                    245: *     .. External Subroutines ..
                    246:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZHETRD, ZLACPY, ZLASCL,
                    247:      $                   ZSTEDC, ZUNMTR
                    248: *     ..
                    249: *     .. Intrinsic Functions ..
                    250:       INTRINSIC          MAX, SQRT
                    251: *     ..
                    252: *     .. Executable Statements ..
                    253: *
                    254: *     Test the input parameters.
                    255: *
                    256:       WANTZ = LSAME( JOBZ, 'V' )
                    257:       LOWER = LSAME( UPLO, 'L' )
                    258:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    259: *
                    260:       INFO = 0
                    261:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    262:          INFO = -1
                    263:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    264:          INFO = -2
                    265:       ELSE IF( N.LT.0 ) THEN
                    266:          INFO = -3
                    267:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    268:          INFO = -5
                    269:       END IF
                    270: *
                    271:       IF( INFO.EQ.0 ) THEN
                    272:          IF( N.LE.1 ) THEN
                    273:             LWMIN = 1
                    274:             LRWMIN = 1
                    275:             LIWMIN = 1
                    276:             LOPT = LWMIN
                    277:             LROPT = LRWMIN
                    278:             LIOPT = LIWMIN
                    279:          ELSE
                    280:             IF( WANTZ ) THEN
                    281:                LWMIN = 2*N + N*N
                    282:                LRWMIN = 1 + 5*N + 2*N**2
                    283:                LIWMIN = 3 + 5*N
                    284:             ELSE
                    285:                LWMIN = N + 1
                    286:                LRWMIN = N
                    287:                LIWMIN = 1
                    288:             END IF
                    289:             LOPT = MAX( LWMIN, N +
                    290:      $                  ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 ) )
                    291:             LROPT = LRWMIN
                    292:             LIOPT = LIWMIN
                    293:          END IF
                    294:          WORK( 1 ) = LOPT
                    295:          RWORK( 1 ) = LROPT
                    296:          IWORK( 1 ) = LIOPT
                    297: *
                    298:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    299:             INFO = -8
                    300:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    301:             INFO = -10
                    302:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    303:             INFO = -12
                    304:          END IF
                    305:       END IF
                    306: *
                    307:       IF( INFO.NE.0 ) THEN
                    308:          CALL XERBLA( 'ZHEEVD', -INFO )
                    309:          RETURN
                    310:       ELSE IF( LQUERY ) THEN
                    311:          RETURN
                    312:       END IF
                    313: *
                    314: *     Quick return if possible
                    315: *
                    316:       IF( N.EQ.0 )
                    317:      $   RETURN
                    318: *
                    319:       IF( N.EQ.1 ) THEN
                    320:          W( 1 ) = A( 1, 1 )
                    321:          IF( WANTZ )
                    322:      $      A( 1, 1 ) = CONE
                    323:          RETURN
                    324:       END IF
                    325: *
                    326: *     Get machine constants.
                    327: *
                    328:       SAFMIN = DLAMCH( 'Safe minimum' )
                    329:       EPS = DLAMCH( 'Precision' )
                    330:       SMLNUM = SAFMIN / EPS
                    331:       BIGNUM = ONE / SMLNUM
                    332:       RMIN = SQRT( SMLNUM )
                    333:       RMAX = SQRT( BIGNUM )
                    334: *
                    335: *     Scale matrix to allowable range, if necessary.
                    336: *
                    337:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
                    338:       ISCALE = 0
                    339:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    340:          ISCALE = 1
                    341:          SIGMA = RMIN / ANRM
                    342:       ELSE IF( ANRM.GT.RMAX ) THEN
                    343:          ISCALE = 1
                    344:          SIGMA = RMAX / ANRM
                    345:       END IF
                    346:       IF( ISCALE.EQ.1 )
                    347:      $   CALL ZLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
                    348: *
                    349: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
                    350: *
                    351:       INDE = 1
                    352:       INDTAU = 1
                    353:       INDWRK = INDTAU + N
                    354:       INDRWK = INDE + N
                    355:       INDWK2 = INDWRK + N*N
                    356:       LLWORK = LWORK - INDWRK + 1
                    357:       LLWRK2 = LWORK - INDWK2 + 1
                    358:       LLRWK = LRWORK - INDRWK + 1
                    359:       CALL ZHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
                    360:      $             WORK( INDWRK ), LLWORK, IINFO )
                    361: *
                    362: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    363: *     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
                    364: *     tridiagonal matrix, then call ZUNMTR to multiply it to the
                    365: *     Householder transformations represented as Householder vectors in
                    366: *     A.
                    367: *
                    368:       IF( .NOT.WANTZ ) THEN
                    369:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
                    370:       ELSE
                    371:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
                    372:      $                WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
                    373:      $                IWORK, LIWORK, INFO )
                    374:          CALL ZUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
                    375:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
                    376:          CALL ZLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
                    377:       END IF
                    378: *
                    379: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    380: *
                    381:       IF( ISCALE.EQ.1 ) THEN
                    382:          IF( INFO.EQ.0 ) THEN
                    383:             IMAX = N
                    384:          ELSE
                    385:             IMAX = INFO - 1
                    386:          END IF
                    387:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    388:       END IF
                    389: *
                    390:       WORK( 1 ) = LOPT
                    391:       RWORK( 1 ) = LROPT
                    392:       IWORK( 1 ) = LIOPT
                    393: *
                    394:       RETURN
                    395: *
                    396: *     End of ZHEEVD
                    397: *
                    398:       END

CVSweb interface <joel.bertrand@systella.fr>