Annotation of rpl/lapack/lapack/zheevd.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
                      2:      $                   LRWORK, IWORK, LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBZ, UPLO
                     11:       INTEGER            INFO, LDA, LIWORK, LRWORK, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IWORK( * )
                     15:       DOUBLE PRECISION   RWORK( * ), W( * )
                     16:       COMPLEX*16         A( LDA, * ), WORK( * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
                     23: *  complex Hermitian matrix A.  If eigenvectors are desired, it uses a
                     24: *  divide and conquer algorithm.
                     25: *
                     26: *  The divide and conquer algorithm makes very mild assumptions about
                     27: *  floating point arithmetic. It will work on machines with a guard
                     28: *  digit in add/subtract, or on those binary machines without guard
                     29: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     30: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     31: *  without guard digits, but we know of none.
                     32: *
                     33: *  Arguments
                     34: *  =========
                     35: *
                     36: *  JOBZ    (input) CHARACTER*1
                     37: *          = 'N':  Compute eigenvalues only;
                     38: *          = 'V':  Compute eigenvalues and eigenvectors.
                     39: *
                     40: *  UPLO    (input) CHARACTER*1
                     41: *          = 'U':  Upper triangle of A is stored;
                     42: *          = 'L':  Lower triangle of A is stored.
                     43: *
                     44: *  N       (input) INTEGER
                     45: *          The order of the matrix A.  N >= 0.
                     46: *
                     47: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     48: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     49: *          leading N-by-N upper triangular part of A contains the
                     50: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     51: *          the leading N-by-N lower triangular part of A contains
                     52: *          the lower triangular part of the matrix A.
                     53: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     54: *          orthonormal eigenvectors of the matrix A.
                     55: *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     56: *          or the upper triangle (if UPLO='U') of A, including the
                     57: *          diagonal, is destroyed.
                     58: *
                     59: *  LDA     (input) INTEGER
                     60: *          The leading dimension of the array A.  LDA >= max(1,N).
                     61: *
                     62: *  W       (output) DOUBLE PRECISION array, dimension (N)
                     63: *          If INFO = 0, the eigenvalues in ascending order.
                     64: *
                     65: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     66: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     67: *
                     68: *  LWORK   (input) INTEGER
                     69: *          The length of the array WORK.
                     70: *          If N <= 1,                LWORK must be at least 1.
                     71: *          If JOBZ  = 'N' and N > 1, LWORK must be at least N + 1.
                     72: *          If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2.
                     73: *
                     74: *          If LWORK = -1, then a workspace query is assumed; the routine
                     75: *          only calculates the optimal sizes of the WORK, RWORK and
                     76: *          IWORK arrays, returns these values as the first entries of
                     77: *          the WORK, RWORK and IWORK arrays, and no error message
                     78: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                     79: *
                     80: *  RWORK   (workspace/output) DOUBLE PRECISION array,
                     81: *                                         dimension (LRWORK)
                     82: *          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
                     83: *
                     84: *  LRWORK  (input) INTEGER
                     85: *          The dimension of the array RWORK.
                     86: *          If N <= 1,                LRWORK must be at least 1.
                     87: *          If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
                     88: *          If JOBZ  = 'V' and N > 1, LRWORK must be at least
                     89: *                         1 + 5*N + 2*N**2.
                     90: *
                     91: *          If LRWORK = -1, then a workspace query is assumed; the
                     92: *          routine only calculates the optimal sizes of the WORK, RWORK
                     93: *          and IWORK arrays, returns these values as the first entries
                     94: *          of the WORK, RWORK and IWORK arrays, and no error message
                     95: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                     96: *
                     97: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                     98: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                     99: *
                    100: *  LIWORK  (input) INTEGER
                    101: *          The dimension of the array IWORK.
                    102: *          If N <= 1,                LIWORK must be at least 1.
                    103: *          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
                    104: *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
                    105: *
                    106: *          If LIWORK = -1, then a workspace query is assumed; the
                    107: *          routine only calculates the optimal sizes of the WORK, RWORK
                    108: *          and IWORK arrays, returns these values as the first entries
                    109: *          of the WORK, RWORK and IWORK arrays, and no error message
                    110: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    111: *
                    112: *  INFO    (output) INTEGER
                    113: *          = 0:  successful exit
                    114: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    115: *          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                    116: *                to converge; i off-diagonal elements of an intermediate
                    117: *                tridiagonal form did not converge to zero;
                    118: *                if INFO = i and JOBZ = 'V', then the algorithm failed
                    119: *                to compute an eigenvalue while working on the submatrix
                    120: *                lying in rows and columns INFO/(N+1) through
                    121: *                mod(INFO,N+1).
                    122: *
                    123: *  Further Details
                    124: *  ===============
                    125: *
                    126: *  Based on contributions by
                    127: *     Jeff Rutter, Computer Science Division, University of California
                    128: *     at Berkeley, USA
                    129: *
                    130: *  Modified description of INFO. Sven, 16 Feb 05.
                    131: *  =====================================================================
                    132: *
                    133: *     .. Parameters ..
                    134:       DOUBLE PRECISION   ZERO, ONE
                    135:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    136:       COMPLEX*16         CONE
                    137:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
                    138: *     ..
                    139: *     .. Local Scalars ..
                    140:       LOGICAL            LOWER, LQUERY, WANTZ
                    141:       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
                    142:      $                   INDWRK, ISCALE, LIOPT, LIWMIN, LLRWK, LLWORK,
                    143:      $                   LLWRK2, LOPT, LROPT, LRWMIN, LWMIN
                    144:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    145:      $                   SMLNUM
                    146: *     ..
                    147: *     .. External Functions ..
                    148:       LOGICAL            LSAME
                    149:       INTEGER            ILAENV
                    150:       DOUBLE PRECISION   DLAMCH, ZLANHE
                    151:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
                    152: *     ..
                    153: *     .. External Subroutines ..
                    154:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZHETRD, ZLACPY, ZLASCL,
                    155:      $                   ZSTEDC, ZUNMTR
                    156: *     ..
                    157: *     .. Intrinsic Functions ..
                    158:       INTRINSIC          MAX, SQRT
                    159: *     ..
                    160: *     .. Executable Statements ..
                    161: *
                    162: *     Test the input parameters.
                    163: *
                    164:       WANTZ = LSAME( JOBZ, 'V' )
                    165:       LOWER = LSAME( UPLO, 'L' )
                    166:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    167: *
                    168:       INFO = 0
                    169:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    170:          INFO = -1
                    171:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    172:          INFO = -2
                    173:       ELSE IF( N.LT.0 ) THEN
                    174:          INFO = -3
                    175:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    176:          INFO = -5
                    177:       END IF
                    178: *
                    179:       IF( INFO.EQ.0 ) THEN
                    180:          IF( N.LE.1 ) THEN
                    181:             LWMIN = 1
                    182:             LRWMIN = 1
                    183:             LIWMIN = 1
                    184:             LOPT = LWMIN
                    185:             LROPT = LRWMIN
                    186:             LIOPT = LIWMIN
                    187:          ELSE
                    188:             IF( WANTZ ) THEN
                    189:                LWMIN = 2*N + N*N
                    190:                LRWMIN = 1 + 5*N + 2*N**2
                    191:                LIWMIN = 3 + 5*N
                    192:             ELSE
                    193:                LWMIN = N + 1
                    194:                LRWMIN = N
                    195:                LIWMIN = 1
                    196:             END IF
                    197:             LOPT = MAX( LWMIN, N +
                    198:      $                  ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 ) )
                    199:             LROPT = LRWMIN
                    200:             LIOPT = LIWMIN
                    201:          END IF
                    202:          WORK( 1 ) = LOPT
                    203:          RWORK( 1 ) = LROPT
                    204:          IWORK( 1 ) = LIOPT
                    205: *
                    206:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    207:             INFO = -8
                    208:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    209:             INFO = -10
                    210:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    211:             INFO = -12
                    212:          END IF
                    213:       END IF
                    214: *
                    215:       IF( INFO.NE.0 ) THEN
                    216:          CALL XERBLA( 'ZHEEVD', -INFO )
                    217:          RETURN
                    218:       ELSE IF( LQUERY ) THEN
                    219:          RETURN
                    220:       END IF
                    221: *
                    222: *     Quick return if possible
                    223: *
                    224:       IF( N.EQ.0 )
                    225:      $   RETURN
                    226: *
                    227:       IF( N.EQ.1 ) THEN
                    228:          W( 1 ) = A( 1, 1 )
                    229:          IF( WANTZ )
                    230:      $      A( 1, 1 ) = CONE
                    231:          RETURN
                    232:       END IF
                    233: *
                    234: *     Get machine constants.
                    235: *
                    236:       SAFMIN = DLAMCH( 'Safe minimum' )
                    237:       EPS = DLAMCH( 'Precision' )
                    238:       SMLNUM = SAFMIN / EPS
                    239:       BIGNUM = ONE / SMLNUM
                    240:       RMIN = SQRT( SMLNUM )
                    241:       RMAX = SQRT( BIGNUM )
                    242: *
                    243: *     Scale matrix to allowable range, if necessary.
                    244: *
                    245:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
                    246:       ISCALE = 0
                    247:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    248:          ISCALE = 1
                    249:          SIGMA = RMIN / ANRM
                    250:       ELSE IF( ANRM.GT.RMAX ) THEN
                    251:          ISCALE = 1
                    252:          SIGMA = RMAX / ANRM
                    253:       END IF
                    254:       IF( ISCALE.EQ.1 )
                    255:      $   CALL ZLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
                    256: *
                    257: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
                    258: *
                    259:       INDE = 1
                    260:       INDTAU = 1
                    261:       INDWRK = INDTAU + N
                    262:       INDRWK = INDE + N
                    263:       INDWK2 = INDWRK + N*N
                    264:       LLWORK = LWORK - INDWRK + 1
                    265:       LLWRK2 = LWORK - INDWK2 + 1
                    266:       LLRWK = LRWORK - INDRWK + 1
                    267:       CALL ZHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
                    268:      $             WORK( INDWRK ), LLWORK, IINFO )
                    269: *
                    270: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    271: *     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
                    272: *     tridiagonal matrix, then call ZUNMTR to multiply it to the
                    273: *     Householder transformations represented as Householder vectors in
                    274: *     A.
                    275: *
                    276:       IF( .NOT.WANTZ ) THEN
                    277:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
                    278:       ELSE
                    279:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
                    280:      $                WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
                    281:      $                IWORK, LIWORK, INFO )
                    282:          CALL ZUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
                    283:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
                    284:          CALL ZLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
                    285:       END IF
                    286: *
                    287: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    288: *
                    289:       IF( ISCALE.EQ.1 ) THEN
                    290:          IF( INFO.EQ.0 ) THEN
                    291:             IMAX = N
                    292:          ELSE
                    293:             IMAX = INFO - 1
                    294:          END IF
                    295:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    296:       END IF
                    297: *
                    298:       WORK( 1 ) = LOPT
                    299:       RWORK( 1 ) = LROPT
                    300:       IWORK( 1 ) = LIOPT
                    301: *
                    302:       RETURN
                    303: *
                    304: *     End of ZHEEVD
                    305: *
                    306:       END

CVSweb interface <joel.bertrand@systella.fr>