Annotation of rpl/lapack/lapack/zheevd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
        !             2:      $                   LRWORK, IWORK, LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBZ, UPLO
        !            11:       INTEGER            INFO, LDA, LIWORK, LRWORK, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   RWORK( * ), W( * )
        !            16:       COMPLEX*16         A( LDA, * ), WORK( * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
        !            23: *  complex Hermitian matrix A.  If eigenvectors are desired, it uses a
        !            24: *  divide and conquer algorithm.
        !            25: *
        !            26: *  The divide and conquer algorithm makes very mild assumptions about
        !            27: *  floating point arithmetic. It will work on machines with a guard
        !            28: *  digit in add/subtract, or on those binary machines without guard
        !            29: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            30: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            31: *  without guard digits, but we know of none.
        !            32: *
        !            33: *  Arguments
        !            34: *  =========
        !            35: *
        !            36: *  JOBZ    (input) CHARACTER*1
        !            37: *          = 'N':  Compute eigenvalues only;
        !            38: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            39: *
        !            40: *  UPLO    (input) CHARACTER*1
        !            41: *          = 'U':  Upper triangle of A is stored;
        !            42: *          = 'L':  Lower triangle of A is stored.
        !            43: *
        !            44: *  N       (input) INTEGER
        !            45: *          The order of the matrix A.  N >= 0.
        !            46: *
        !            47: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
        !            48: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
        !            49: *          leading N-by-N upper triangular part of A contains the
        !            50: *          upper triangular part of the matrix A.  If UPLO = 'L',
        !            51: *          the leading N-by-N lower triangular part of A contains
        !            52: *          the lower triangular part of the matrix A.
        !            53: *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
        !            54: *          orthonormal eigenvectors of the matrix A.
        !            55: *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
        !            56: *          or the upper triangle (if UPLO='U') of A, including the
        !            57: *          diagonal, is destroyed.
        !            58: *
        !            59: *  LDA     (input) INTEGER
        !            60: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            61: *
        !            62: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            63: *          If INFO = 0, the eigenvalues in ascending order.
        !            64: *
        !            65: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            66: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            67: *
        !            68: *  LWORK   (input) INTEGER
        !            69: *          The length of the array WORK.
        !            70: *          If N <= 1,                LWORK must be at least 1.
        !            71: *          If JOBZ  = 'N' and N > 1, LWORK must be at least N + 1.
        !            72: *          If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2.
        !            73: *
        !            74: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            75: *          only calculates the optimal sizes of the WORK, RWORK and
        !            76: *          IWORK arrays, returns these values as the first entries of
        !            77: *          the WORK, RWORK and IWORK arrays, and no error message
        !            78: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !            79: *
        !            80: *  RWORK   (workspace/output) DOUBLE PRECISION array,
        !            81: *                                         dimension (LRWORK)
        !            82: *          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
        !            83: *
        !            84: *  LRWORK  (input) INTEGER
        !            85: *          The dimension of the array RWORK.
        !            86: *          If N <= 1,                LRWORK must be at least 1.
        !            87: *          If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
        !            88: *          If JOBZ  = 'V' and N > 1, LRWORK must be at least
        !            89: *                         1 + 5*N + 2*N**2.
        !            90: *
        !            91: *          If LRWORK = -1, then a workspace query is assumed; the
        !            92: *          routine only calculates the optimal sizes of the WORK, RWORK
        !            93: *          and IWORK arrays, returns these values as the first entries
        !            94: *          of the WORK, RWORK and IWORK arrays, and no error message
        !            95: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !            96: *
        !            97: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !            98: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !            99: *
        !           100: *  LIWORK  (input) INTEGER
        !           101: *          The dimension of the array IWORK.
        !           102: *          If N <= 1,                LIWORK must be at least 1.
        !           103: *          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
        !           104: *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
        !           105: *
        !           106: *          If LIWORK = -1, then a workspace query is assumed; the
        !           107: *          routine only calculates the optimal sizes of the WORK, RWORK
        !           108: *          and IWORK arrays, returns these values as the first entries
        !           109: *          of the WORK, RWORK and IWORK arrays, and no error message
        !           110: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           111: *
        !           112: *  INFO    (output) INTEGER
        !           113: *          = 0:  successful exit
        !           114: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           115: *          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
        !           116: *                to converge; i off-diagonal elements of an intermediate
        !           117: *                tridiagonal form did not converge to zero;
        !           118: *                if INFO = i and JOBZ = 'V', then the algorithm failed
        !           119: *                to compute an eigenvalue while working on the submatrix
        !           120: *                lying in rows and columns INFO/(N+1) through
        !           121: *                mod(INFO,N+1).
        !           122: *
        !           123: *  Further Details
        !           124: *  ===============
        !           125: *
        !           126: *  Based on contributions by
        !           127: *     Jeff Rutter, Computer Science Division, University of California
        !           128: *     at Berkeley, USA
        !           129: *
        !           130: *  Modified description of INFO. Sven, 16 Feb 05.
        !           131: *  =====================================================================
        !           132: *
        !           133: *     .. Parameters ..
        !           134:       DOUBLE PRECISION   ZERO, ONE
        !           135:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           136:       COMPLEX*16         CONE
        !           137:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
        !           138: *     ..
        !           139: *     .. Local Scalars ..
        !           140:       LOGICAL            LOWER, LQUERY, WANTZ
        !           141:       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
        !           142:      $                   INDWRK, ISCALE, LIOPT, LIWMIN, LLRWK, LLWORK,
        !           143:      $                   LLWRK2, LOPT, LROPT, LRWMIN, LWMIN
        !           144:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
        !           145:      $                   SMLNUM
        !           146: *     ..
        !           147: *     .. External Functions ..
        !           148:       LOGICAL            LSAME
        !           149:       INTEGER            ILAENV
        !           150:       DOUBLE PRECISION   DLAMCH, ZLANHE
        !           151:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
        !           152: *     ..
        !           153: *     .. External Subroutines ..
        !           154:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZHETRD, ZLACPY, ZLASCL,
        !           155:      $                   ZSTEDC, ZUNMTR
        !           156: *     ..
        !           157: *     .. Intrinsic Functions ..
        !           158:       INTRINSIC          MAX, SQRT
        !           159: *     ..
        !           160: *     .. Executable Statements ..
        !           161: *
        !           162: *     Test the input parameters.
        !           163: *
        !           164:       WANTZ = LSAME( JOBZ, 'V' )
        !           165:       LOWER = LSAME( UPLO, 'L' )
        !           166:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           167: *
        !           168:       INFO = 0
        !           169:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           170:          INFO = -1
        !           171:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
        !           172:          INFO = -2
        !           173:       ELSE IF( N.LT.0 ) THEN
        !           174:          INFO = -3
        !           175:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           176:          INFO = -5
        !           177:       END IF
        !           178: *
        !           179:       IF( INFO.EQ.0 ) THEN
        !           180:          IF( N.LE.1 ) THEN
        !           181:             LWMIN = 1
        !           182:             LRWMIN = 1
        !           183:             LIWMIN = 1
        !           184:             LOPT = LWMIN
        !           185:             LROPT = LRWMIN
        !           186:             LIOPT = LIWMIN
        !           187:          ELSE
        !           188:             IF( WANTZ ) THEN
        !           189:                LWMIN = 2*N + N*N
        !           190:                LRWMIN = 1 + 5*N + 2*N**2
        !           191:                LIWMIN = 3 + 5*N
        !           192:             ELSE
        !           193:                LWMIN = N + 1
        !           194:                LRWMIN = N
        !           195:                LIWMIN = 1
        !           196:             END IF
        !           197:             LOPT = MAX( LWMIN, N +
        !           198:      $                  ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 ) )
        !           199:             LROPT = LRWMIN
        !           200:             LIOPT = LIWMIN
        !           201:          END IF
        !           202:          WORK( 1 ) = LOPT
        !           203:          RWORK( 1 ) = LROPT
        !           204:          IWORK( 1 ) = LIOPT
        !           205: *
        !           206:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           207:             INFO = -8
        !           208:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
        !           209:             INFO = -10
        !           210:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           211:             INFO = -12
        !           212:          END IF
        !           213:       END IF
        !           214: *
        !           215:       IF( INFO.NE.0 ) THEN
        !           216:          CALL XERBLA( 'ZHEEVD', -INFO )
        !           217:          RETURN
        !           218:       ELSE IF( LQUERY ) THEN
        !           219:          RETURN
        !           220:       END IF
        !           221: *
        !           222: *     Quick return if possible
        !           223: *
        !           224:       IF( N.EQ.0 )
        !           225:      $   RETURN
        !           226: *
        !           227:       IF( N.EQ.1 ) THEN
        !           228:          W( 1 ) = A( 1, 1 )
        !           229:          IF( WANTZ )
        !           230:      $      A( 1, 1 ) = CONE
        !           231:          RETURN
        !           232:       END IF
        !           233: *
        !           234: *     Get machine constants.
        !           235: *
        !           236:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           237:       EPS = DLAMCH( 'Precision' )
        !           238:       SMLNUM = SAFMIN / EPS
        !           239:       BIGNUM = ONE / SMLNUM
        !           240:       RMIN = SQRT( SMLNUM )
        !           241:       RMAX = SQRT( BIGNUM )
        !           242: *
        !           243: *     Scale matrix to allowable range, if necessary.
        !           244: *
        !           245:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
        !           246:       ISCALE = 0
        !           247:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
        !           248:          ISCALE = 1
        !           249:          SIGMA = RMIN / ANRM
        !           250:       ELSE IF( ANRM.GT.RMAX ) THEN
        !           251:          ISCALE = 1
        !           252:          SIGMA = RMAX / ANRM
        !           253:       END IF
        !           254:       IF( ISCALE.EQ.1 )
        !           255:      $   CALL ZLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
        !           256: *
        !           257: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
        !           258: *
        !           259:       INDE = 1
        !           260:       INDTAU = 1
        !           261:       INDWRK = INDTAU + N
        !           262:       INDRWK = INDE + N
        !           263:       INDWK2 = INDWRK + N*N
        !           264:       LLWORK = LWORK - INDWRK + 1
        !           265:       LLWRK2 = LWORK - INDWK2 + 1
        !           266:       LLRWK = LRWORK - INDRWK + 1
        !           267:       CALL ZHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
        !           268:      $             WORK( INDWRK ), LLWORK, IINFO )
        !           269: *
        !           270: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
        !           271: *     ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
        !           272: *     tridiagonal matrix, then call ZUNMTR to multiply it to the
        !           273: *     Householder transformations represented as Householder vectors in
        !           274: *     A.
        !           275: *
        !           276:       IF( .NOT.WANTZ ) THEN
        !           277:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
        !           278:       ELSE
        !           279:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
        !           280:      $                WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
        !           281:      $                IWORK, LIWORK, INFO )
        !           282:          CALL ZUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
        !           283:      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
        !           284:          CALL ZLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
        !           285:       END IF
        !           286: *
        !           287: *     If matrix was scaled, then rescale eigenvalues appropriately.
        !           288: *
        !           289:       IF( ISCALE.EQ.1 ) THEN
        !           290:          IF( INFO.EQ.0 ) THEN
        !           291:             IMAX = N
        !           292:          ELSE
        !           293:             IMAX = INFO - 1
        !           294:          END IF
        !           295:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
        !           296:       END IF
        !           297: *
        !           298:       WORK( 1 ) = LOPT
        !           299:       RWORK( 1 ) = LROPT
        !           300:       IWORK( 1 ) = LIOPT
        !           301: *
        !           302:       RETURN
        !           303: *
        !           304: *     End of ZHEEVD
        !           305: *
        !           306:       END

CVSweb interface <joel.bertrand@systella.fr>