Annotation of rpl/lapack/lapack/zheev_2stage.f, revision 1.5

1.1       bertrand    1: *> \brief <b> ZHEEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
                      2: *
                      3: *  @precisions fortran z -> s d c
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download ZHEEV_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheev_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheev_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheev_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE ZHEEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK,
                     24: *                                RWORK, INFO )
                     25: *
                     26: *       IMPLICIT NONE
                     27: *
                     28: *       .. Scalar Arguments ..
                     29: *       CHARACTER          JOBZ, UPLO
                     30: *       INTEGER            INFO, LDA, LWORK, N
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     34: *       COMPLEX*16         A( LDA, * ), WORK( * )
                     35: *       ..
                     36: *
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> ZHEEV_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
                     44: *> complex Hermitian matrix A using the 2stage technique for
                     45: *> the reduction to tridiagonal.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] JOBZ
                     52: *> \verbatim
                     53: *>          JOBZ is CHARACTER*1
                     54: *>          = 'N':  Compute eigenvalues only;
                     55: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     56: *>                  Not available in this release.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] UPLO
                     60: *> \verbatim
                     61: *>          UPLO is CHARACTER*1
                     62: *>          = 'U':  Upper triangle of A is stored;
                     63: *>          = 'L':  Lower triangle of A is stored.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] N
                     67: *> \verbatim
                     68: *>          N is INTEGER
                     69: *>          The order of the matrix A.  N >= 0.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in,out] A
                     73: *> \verbatim
                     74: *>          A is COMPLEX*16 array, dimension (LDA, N)
                     75: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     76: *>          leading N-by-N upper triangular part of A contains the
                     77: *>          upper triangular part of the matrix A.  If UPLO = 'L',
                     78: *>          the leading N-by-N lower triangular part of A contains
                     79: *>          the lower triangular part of the matrix A.
                     80: *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     81: *>          orthonormal eigenvectors of the matrix A.
                     82: *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     83: *>          or the upper triangle (if UPLO='U') of A, including the
                     84: *>          diagonal, is destroyed.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] LDA
                     88: *> \verbatim
                     89: *>          LDA is INTEGER
                     90: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[out] W
                     94: *> \verbatim
                     95: *>          W is DOUBLE PRECISION array, dimension (N)
                     96: *>          If INFO = 0, the eigenvalues in ascending order.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[out] WORK
                    100: *> \verbatim
                    101: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    102: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] LWORK
                    106: *> \verbatim
                    107: *>          LWORK is INTEGER
                    108: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
                    109: *>          otherwise  
                    110: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    111: *>                                   LWORK = MAX(1, dimension) where
                    112: *>                                   dimension = max(stage1,stage2) + (KD+1)*N + N
                    113: *>                                             = N*KD + N*max(KD+1,FACTOPTNB) 
                    114: *>                                               + max(2*KD*KD, KD*NTHREADS) 
                    115: *>                                               + (KD+1)*N + N
                    116: *>                                   where KD is the blocking size of the reduction,
                    117: *>                                   FACTOPTNB is the blocking used by the QR or LQ
                    118: *>                                   algorithm, usually FACTOPTNB=128 is a good choice
                    119: *>                                   NTHREADS is the number of threads used when
                    120: *>                                   openMP compilation is enabled, otherwise =1.
                    121: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
                    122: *>
                    123: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    124: *>          only calculates the optimal size of the WORK array, returns
                    125: *>          this value as the first entry of the WORK array, and no error
                    126: *>          message related to LWORK is issued by XERBLA.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[out] RWORK
                    130: *> \verbatim
                    131: *>          RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[out] INFO
                    135: *> \verbatim
                    136: *>          INFO is INTEGER
                    137: *>          = 0:  successful exit
                    138: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    139: *>          > 0:  if INFO = i, the algorithm failed to converge; i
                    140: *>                off-diagonal elements of an intermediate tridiagonal
                    141: *>                form did not converge to zero.
                    142: *> \endverbatim
                    143: *
                    144: *  Authors:
                    145: *  ========
                    146: *
                    147: *> \author Univ. of Tennessee
                    148: *> \author Univ. of California Berkeley
                    149: *> \author Univ. of Colorado Denver
                    150: *> \author NAG Ltd.
                    151: *
                    152: *> \ingroup complex16HEeigen
                    153: *
                    154: *> \par Further Details:
                    155: *  =====================
                    156: *>
                    157: *> \verbatim
                    158: *>
                    159: *>  All details about the 2stage techniques are available in:
                    160: *>
                    161: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    162: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    163: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    164: *>  of 2011 International Conference for High Performance Computing,
                    165: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    166: *>  Article 8 , 11 pages.
                    167: *>  http://doi.acm.org/10.1145/2063384.2063394
                    168: *>
                    169: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    170: *>  An improved parallel singular value algorithm and its implementation 
                    171: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    172: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    173: *>  Denver, Colorado, USA, 2013.
                    174: *>  Article 90, 12 pages.
                    175: *>  http://doi.acm.org/10.1145/2503210.2503292
                    176: *>
                    177: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    178: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    179: *>  calculations based on fine-grained memory aware tasks.
                    180: *>  International Journal of High Performance Computing Applications.
                    181: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    182: *>  http://hpc.sagepub.com/content/28/2/196 
                    183: *>
                    184: *> \endverbatim
                    185: *
                    186: *  =====================================================================
                    187:       SUBROUTINE ZHEEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK,
                    188:      $                         RWORK, INFO )
                    189: *
                    190:       IMPLICIT NONE
                    191: *
1.5     ! bertrand  192: *  -- LAPACK driver routine --
1.1       bertrand  193: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    194: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    195: *
                    196: *     .. Scalar Arguments ..
                    197:       CHARACTER          JOBZ, UPLO
                    198:       INTEGER            INFO, LDA, LWORK, N
                    199: *     ..
                    200: *     .. Array Arguments ..
                    201:       DOUBLE PRECISION   RWORK( * ), W( * )
                    202:       COMPLEX*16         A( LDA, * ), WORK( * )
                    203: *     ..
                    204: *
                    205: *  =====================================================================
                    206: *
                    207: *     .. Parameters ..
                    208:       DOUBLE PRECISION   ZERO, ONE
                    209:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    210:       COMPLEX*16         CONE
                    211:       PARAMETER          ( CONE = ( 1.0D0, 0.0D0 ) )
                    212: *     ..
                    213: *     .. Local Scalars ..
                    214:       LOGICAL            LOWER, LQUERY, WANTZ
                    215:       INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
                    216:      $                   LLWORK, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS
                    217:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    218:      $                   SMLNUM
                    219: *     ..
                    220: *     .. External Functions ..
                    221:       LOGICAL            LSAME
1.3       bertrand  222:       INTEGER            ILAENV2STAGE
1.1       bertrand  223:       DOUBLE PRECISION   DLAMCH, ZLANHE
1.3       bertrand  224:       EXTERNAL           LSAME, DLAMCH, ZLANHE, ILAENV2STAGE
1.1       bertrand  225: *     ..
                    226: *     .. External Subroutines ..
                    227:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZLASCL, ZSTEQR,
                    228:      $                   ZUNGTR, ZHETRD_2STAGE
                    229: *     ..
                    230: *     .. Intrinsic Functions ..
                    231:       INTRINSIC          DBLE, MAX, SQRT
                    232: *     ..
                    233: *     .. Executable Statements ..
                    234: *
                    235: *     Test the input parameters.
                    236: *
                    237:       WANTZ = LSAME( JOBZ, 'V' )
                    238:       LOWER = LSAME( UPLO, 'L' )
                    239:       LQUERY = ( LWORK.EQ.-1 )
                    240: *
                    241:       INFO = 0
                    242:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    243:          INFO = -1
                    244:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    245:          INFO = -2
                    246:       ELSE IF( N.LT.0 ) THEN
                    247:          INFO = -3
                    248:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    249:          INFO = -5
                    250:       END IF
                    251: *
                    252:       IF( INFO.EQ.0 ) THEN
1.3       bertrand  253:          KD    = ILAENV2STAGE( 1, 'ZHETRD_2STAGE', JOBZ, N, -1, -1, -1 )
                    254:          IB    = ILAENV2STAGE( 2, 'ZHETRD_2STAGE', JOBZ, N, KD, -1, -1 )
                    255:          LHTRD = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
                    256:          LWTRD = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
1.1       bertrand  257:          LWMIN = N + LHTRD + LWTRD
                    258:          WORK( 1 )  = LWMIN
                    259: *
                    260:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
                    261:      $      INFO = -8
                    262:       END IF
                    263: *
                    264:       IF( INFO.NE.0 ) THEN
                    265:          CALL XERBLA( 'ZHEEV_2STAGE ', -INFO )
                    266:          RETURN
                    267:       ELSE IF( LQUERY ) THEN
                    268:          RETURN
                    269:       END IF
                    270: *
                    271: *     Quick return if possible
                    272: *
                    273:       IF( N.EQ.0 ) THEN
                    274:          RETURN
                    275:       END IF
                    276: *
                    277:       IF( N.EQ.1 ) THEN
                    278:          W( 1 ) = DBLE( A( 1, 1 ) )
                    279:          WORK( 1 ) = 1
                    280:          IF( WANTZ )
                    281:      $      A( 1, 1 ) = CONE
                    282:          RETURN
                    283:       END IF
                    284: *
                    285: *     Get machine constants.
                    286: *
                    287:       SAFMIN = DLAMCH( 'Safe minimum' )
                    288:       EPS    = DLAMCH( 'Precision' )
                    289:       SMLNUM = SAFMIN / EPS
                    290:       BIGNUM = ONE / SMLNUM
                    291:       RMIN   = SQRT( SMLNUM )
                    292:       RMAX   = SQRT( BIGNUM )
                    293: *
                    294: *     Scale matrix to allowable range, if necessary.
                    295: *
                    296:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
                    297:       ISCALE = 0
                    298:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    299:          ISCALE = 1
                    300:          SIGMA = RMIN / ANRM
                    301:       ELSE IF( ANRM.GT.RMAX ) THEN
                    302:          ISCALE = 1
                    303:          SIGMA = RMAX / ANRM
                    304:       END IF
                    305:       IF( ISCALE.EQ.1 )
                    306:      $   CALL ZLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
                    307: *
                    308: *     Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
                    309: *
                    310:       INDE    = 1
                    311:       INDTAU  = 1
                    312:       INDHOUS = INDTAU + N
                    313:       INDWRK  = INDHOUS + LHTRD
                    314:       LLWORK  = LWORK - INDWRK + 1
                    315: *
                    316:       CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, W, RWORK( INDE ),
                    317:      $                    WORK( INDTAU ), WORK( INDHOUS ), LHTRD, 
                    318:      $                    WORK( INDWRK ), LLWORK, IINFO )
                    319: *
                    320: *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
                    321: *     ZUNGTR to generate the unitary matrix, then call ZSTEQR.
                    322: *
                    323:       IF( .NOT.WANTZ ) THEN
                    324:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
                    325:       ELSE
                    326:          CALL ZUNGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
                    327:      $                LLWORK, IINFO )
                    328:          INDWRK = INDE + N
                    329:          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), A, LDA,
                    330:      $                RWORK( INDWRK ), INFO )
                    331:       END IF
                    332: *
                    333: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    334: *
                    335:       IF( ISCALE.EQ.1 ) THEN
                    336:          IF( INFO.EQ.0 ) THEN
                    337:             IMAX = N
                    338:          ELSE
                    339:             IMAX = INFO - 1
                    340:          END IF
                    341:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    342:       END IF
                    343: *
                    344: *     Set WORK(1) to optimal complex workspace size.
                    345: *
                    346:       WORK( 1 ) = LWMIN
                    347: *
                    348:       RETURN
                    349: *
                    350: *     End of ZHEEV_2STAGE
                    351: *
                    352:       END

CVSweb interface <joel.bertrand@systella.fr>