File:  [local] / rpl / lapack / lapack / zhbgvx.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:54 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
    2:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
    3:      $                   LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
   13:      $                   N
   14:       DOUBLE PRECISION   ABSTOL, VL, VU
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IFAIL( * ), IWORK( * )
   18:       DOUBLE PRECISION   RWORK( * ), W( * )
   19:       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
   20:      $                   WORK( * ), Z( LDZ, * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  ZHBGVX computes all the eigenvalues, and optionally, the eigenvectors
   27: *  of a complex generalized Hermitian-definite banded eigenproblem, of
   28: *  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
   29: *  and banded, and B is also positive definite.  Eigenvalues and
   30: *  eigenvectors can be selected by specifying either all eigenvalues,
   31: *  a range of values or a range of indices for the desired eigenvalues.
   32: *
   33: *  Arguments
   34: *  =========
   35: *
   36: *  JOBZ    (input) CHARACTER*1
   37: *          = 'N':  Compute eigenvalues only;
   38: *          = 'V':  Compute eigenvalues and eigenvectors.
   39: *
   40: *  RANGE   (input) CHARACTER*1
   41: *          = 'A': all eigenvalues will be found;
   42: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   43: *                 will be found;
   44: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   45: *
   46: *  UPLO    (input) CHARACTER*1
   47: *          = 'U':  Upper triangles of A and B are stored;
   48: *          = 'L':  Lower triangles of A and B are stored.
   49: *
   50: *  N       (input) INTEGER
   51: *          The order of the matrices A and B.  N >= 0.
   52: *
   53: *  KA      (input) INTEGER
   54: *          The number of superdiagonals of the matrix A if UPLO = 'U',
   55: *          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
   56: *
   57: *  KB      (input) INTEGER
   58: *          The number of superdiagonals of the matrix B if UPLO = 'U',
   59: *          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
   60: *
   61: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
   62: *          On entry, the upper or lower triangle of the Hermitian band
   63: *          matrix A, stored in the first ka+1 rows of the array.  The
   64: *          j-th column of A is stored in the j-th column of the array AB
   65: *          as follows:
   66: *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
   67: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
   68: *
   69: *          On exit, the contents of AB are destroyed.
   70: *
   71: *  LDAB    (input) INTEGER
   72: *          The leading dimension of the array AB.  LDAB >= KA+1.
   73: *
   74: *  BB      (input/output) COMPLEX*16 array, dimension (LDBB, N)
   75: *          On entry, the upper or lower triangle of the Hermitian band
   76: *          matrix B, stored in the first kb+1 rows of the array.  The
   77: *          j-th column of B is stored in the j-th column of the array BB
   78: *          as follows:
   79: *          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
   80: *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
   81: *
   82: *          On exit, the factor S from the split Cholesky factorization
   83: *          B = S**H*S, as returned by ZPBSTF.
   84: *
   85: *  LDBB    (input) INTEGER
   86: *          The leading dimension of the array BB.  LDBB >= KB+1.
   87: *
   88: *  Q       (output) COMPLEX*16 array, dimension (LDQ, N)
   89: *          If JOBZ = 'V', the n-by-n matrix used in the reduction of
   90: *          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
   91: *          and consequently C to tridiagonal form.
   92: *          If JOBZ = 'N', the array Q is not referenced.
   93: *
   94: *  LDQ     (input) INTEGER
   95: *          The leading dimension of the array Q.  If JOBZ = 'N',
   96: *          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
   97: *
   98: *  VL      (input) DOUBLE PRECISION
   99: *  VU      (input) DOUBLE PRECISION
  100: *          If RANGE='V', the lower and upper bounds of the interval to
  101: *          be searched for eigenvalues. VL < VU.
  102: *          Not referenced if RANGE = 'A' or 'I'.
  103: *
  104: *  IL      (input) INTEGER
  105: *  IU      (input) INTEGER
  106: *          If RANGE='I', the indices (in ascending order) of the
  107: *          smallest and largest eigenvalues to be returned.
  108: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  109: *          Not referenced if RANGE = 'A' or 'V'.
  110: *
  111: *  ABSTOL  (input) DOUBLE PRECISION
  112: *          The absolute error tolerance for the eigenvalues.
  113: *          An approximate eigenvalue is accepted as converged
  114: *          when it is determined to lie in an interval [a,b]
  115: *          of width less than or equal to
  116: *
  117: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
  118: *
  119: *          where EPS is the machine precision.  If ABSTOL is less than
  120: *          or equal to zero, then  EPS*|T|  will be used in its place,
  121: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  122: *          by reducing AP to tridiagonal form.
  123: *
  124: *          Eigenvalues will be computed most accurately when ABSTOL is
  125: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  126: *          If this routine returns with INFO>0, indicating that some
  127: *          eigenvectors did not converge, try setting ABSTOL to
  128: *          2*DLAMCH('S').
  129: *
  130: *  M       (output) INTEGER
  131: *          The total number of eigenvalues found.  0 <= M <= N.
  132: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  133: *
  134: *  W       (output) DOUBLE PRECISION array, dimension (N)
  135: *          If INFO = 0, the eigenvalues in ascending order.
  136: *
  137: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
  138: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
  139: *          eigenvectors, with the i-th column of Z holding the
  140: *          eigenvector associated with W(i). The eigenvectors are
  141: *          normalized so that Z**H*B*Z = I.
  142: *          If JOBZ = 'N', then Z is not referenced.
  143: *
  144: *  LDZ     (input) INTEGER
  145: *          The leading dimension of the array Z.  LDZ >= 1, and if
  146: *          JOBZ = 'V', LDZ >= N.
  147: *
  148: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
  149: *
  150: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
  151: *
  152: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  153: *
  154: *  IFAIL   (output) INTEGER array, dimension (N)
  155: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  156: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  157: *          indices of the eigenvectors that failed to converge.
  158: *          If JOBZ = 'N', then IFAIL is not referenced.
  159: *
  160: *  INFO    (output) INTEGER
  161: *          = 0:  successful exit
  162: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  163: *          > 0:  if INFO = i, and i is:
  164: *             <= N:  then i eigenvectors failed to converge.  Their
  165: *                    indices are stored in array IFAIL.
  166: *             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
  167: *                    returned INFO = i: B is not positive definite.
  168: *                    The factorization of B could not be completed and
  169: *                    no eigenvalues or eigenvectors were computed.
  170: *
  171: *  Further Details
  172: *  ===============
  173: *
  174: *  Based on contributions by
  175: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  176: *
  177: *  =====================================================================
  178: *
  179: *     .. Parameters ..
  180:       DOUBLE PRECISION   ZERO
  181:       PARAMETER          ( ZERO = 0.0D+0 )
  182:       COMPLEX*16         CZERO, CONE
  183:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  184:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  185: *     ..
  186: *     .. Local Scalars ..
  187:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
  188:       CHARACTER          ORDER, VECT
  189:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
  190:      $                   INDIWK, INDRWK, INDWRK, ITMP1, J, JJ, NSPLIT
  191:       DOUBLE PRECISION   TMP1
  192: *     ..
  193: *     .. External Functions ..
  194:       LOGICAL            LSAME
  195:       EXTERNAL           LSAME
  196: *     ..
  197: *     .. External Subroutines ..
  198:       EXTERNAL           DCOPY, DSTEBZ, DSTERF, XERBLA, ZCOPY, ZGEMV,
  199:      $                   ZHBGST, ZHBTRD, ZLACPY, ZPBSTF, ZSTEIN, ZSTEQR,
  200:      $                   ZSWAP
  201: *     ..
  202: *     .. Intrinsic Functions ..
  203:       INTRINSIC          MIN
  204: *     ..
  205: *     .. Executable Statements ..
  206: *
  207: *     Test the input parameters.
  208: *
  209:       WANTZ = LSAME( JOBZ, 'V' )
  210:       UPPER = LSAME( UPLO, 'U' )
  211:       ALLEIG = LSAME( RANGE, 'A' )
  212:       VALEIG = LSAME( RANGE, 'V' )
  213:       INDEIG = LSAME( RANGE, 'I' )
  214: *
  215:       INFO = 0
  216:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  217:          INFO = -1
  218:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  219:          INFO = -2
  220:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  221:          INFO = -3
  222:       ELSE IF( N.LT.0 ) THEN
  223:          INFO = -4
  224:       ELSE IF( KA.LT.0 ) THEN
  225:          INFO = -5
  226:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
  227:          INFO = -6
  228:       ELSE IF( LDAB.LT.KA+1 ) THEN
  229:          INFO = -8
  230:       ELSE IF( LDBB.LT.KB+1 ) THEN
  231:          INFO = -10
  232:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
  233:          INFO = -12
  234:       ELSE
  235:          IF( VALEIG ) THEN
  236:             IF( N.GT.0 .AND. VU.LE.VL )
  237:      $         INFO = -14
  238:          ELSE IF( INDEIG ) THEN
  239:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  240:                INFO = -15
  241:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  242:                INFO = -16
  243:             END IF
  244:          END IF
  245:       END IF
  246:       IF( INFO.EQ.0) THEN
  247:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  248:             INFO = -21
  249:          END IF
  250:       END IF
  251: *
  252:       IF( INFO.NE.0 ) THEN
  253:          CALL XERBLA( 'ZHBGVX', -INFO )
  254:          RETURN
  255:       END IF
  256: *
  257: *     Quick return if possible
  258: *
  259:       M = 0
  260:       IF( N.EQ.0 )
  261:      $   RETURN
  262: *
  263: *     Form a split Cholesky factorization of B.
  264: *
  265:       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
  266:       IF( INFO.NE.0 ) THEN
  267:          INFO = N + INFO
  268:          RETURN
  269:       END IF
  270: *
  271: *     Transform problem to standard eigenvalue problem.
  272: *
  273:       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
  274:      $             WORK, RWORK, IINFO )
  275: *
  276: *     Solve the standard eigenvalue problem.
  277: *     Reduce Hermitian band matrix to tridiagonal form.
  278: *
  279:       INDD = 1
  280:       INDE = INDD + N
  281:       INDRWK = INDE + N
  282:       INDWRK = 1
  283:       IF( WANTZ ) THEN
  284:          VECT = 'U'
  285:       ELSE
  286:          VECT = 'N'
  287:       END IF
  288:       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, RWORK( INDD ),
  289:      $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  290: *
  291: *     If all eigenvalues are desired and ABSTOL is less than or equal
  292: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
  293: *     eigenvalue, then try DSTEBZ.
  294: *
  295:       TEST = .FALSE.
  296:       IF( INDEIG ) THEN
  297:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  298:             TEST = .TRUE.
  299:          END IF
  300:       END IF
  301:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  302:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  303:          INDEE = INDRWK + 2*N
  304:          CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  305:          IF( .NOT.WANTZ ) THEN
  306:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  307:          ELSE
  308:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  309:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  310:      $                   RWORK( INDRWK ), INFO )
  311:             IF( INFO.EQ.0 ) THEN
  312:                DO 10 I = 1, N
  313:                   IFAIL( I ) = 0
  314:    10          CONTINUE
  315:             END IF
  316:          END IF
  317:          IF( INFO.EQ.0 ) THEN
  318:             M = N
  319:             GO TO 30
  320:          END IF
  321:          INFO = 0
  322:       END IF
  323: *
  324: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
  325: *     call ZSTEIN.
  326: *
  327:       IF( WANTZ ) THEN
  328:          ORDER = 'B'
  329:       ELSE
  330:          ORDER = 'E'
  331:       END IF
  332:       INDIBL = 1
  333:       INDISP = INDIBL + N
  334:       INDIWK = INDISP + N
  335:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
  336:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  337:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  338:      $             IWORK( INDIWK ), INFO )
  339: *
  340:       IF( WANTZ ) THEN
  341:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  342:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  343:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  344: *
  345: *        Apply unitary matrix used in reduction to tridiagonal
  346: *        form to eigenvectors returned by ZSTEIN.
  347: *
  348:          DO 20 J = 1, M
  349:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  350:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
  351:      $                  Z( 1, J ), 1 )
  352:    20    CONTINUE
  353:       END IF
  354: *
  355:    30 CONTINUE
  356: *
  357: *     If eigenvalues are not in order, then sort them, along with
  358: *     eigenvectors.
  359: *
  360:       IF( WANTZ ) THEN
  361:          DO 50 J = 1, M - 1
  362:             I = 0
  363:             TMP1 = W( J )
  364:             DO 40 JJ = J + 1, M
  365:                IF( W( JJ ).LT.TMP1 ) THEN
  366:                   I = JJ
  367:                   TMP1 = W( JJ )
  368:                END IF
  369:    40       CONTINUE
  370: *
  371:             IF( I.NE.0 ) THEN
  372:                ITMP1 = IWORK( INDIBL+I-1 )
  373:                W( I ) = W( J )
  374:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  375:                W( J ) = TMP1
  376:                IWORK( INDIBL+J-1 ) = ITMP1
  377:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  378:                IF( INFO.NE.0 ) THEN
  379:                   ITMP1 = IFAIL( I )
  380:                   IFAIL( I ) = IFAIL( J )
  381:                   IFAIL( J ) = ITMP1
  382:                END IF
  383:             END IF
  384:    50    CONTINUE
  385:       END IF
  386: *
  387:       RETURN
  388: *
  389: *     End of ZHBGVX
  390: *
  391:       END

CVSweb interface <joel.bertrand@systella.fr>