Annotation of rpl/lapack/lapack/zhbgvx.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b ZHBGST
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZHBGVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgvx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgvx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgvx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
        !            22: *                          LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
        !            23: *                          LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          JOBZ, RANGE, UPLO
        !            27: *       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
        !            28: *      $                   N
        !            29: *       DOUBLE PRECISION   ABSTOL, VL, VU
        !            30: *       ..
        !            31: *       .. Array Arguments ..
        !            32: *       INTEGER            IFAIL( * ), IWORK( * )
        !            33: *       DOUBLE PRECISION   RWORK( * ), W( * )
        !            34: *       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
        !            35: *      $                   WORK( * ), Z( LDZ, * )
        !            36: *       ..
        !            37: *  
        !            38: *
        !            39: *> \par Purpose:
        !            40: *  =============
        !            41: *>
        !            42: *> \verbatim
        !            43: *>
        !            44: *> ZHBGVX computes all the eigenvalues, and optionally, the eigenvectors
        !            45: *> of a complex generalized Hermitian-definite banded eigenproblem, of
        !            46: *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
        !            47: *> and banded, and B is also positive definite.  Eigenvalues and
        !            48: *> eigenvectors can be selected by specifying either all eigenvalues,
        !            49: *> a range of values or a range of indices for the desired eigenvalues.
        !            50: *> \endverbatim
        !            51: *
        !            52: *  Arguments:
        !            53: *  ==========
        !            54: *
        !            55: *> \param[in] JOBZ
        !            56: *> \verbatim
        !            57: *>          JOBZ is CHARACTER*1
        !            58: *>          = 'N':  Compute eigenvalues only;
        !            59: *>          = 'V':  Compute eigenvalues and eigenvectors.
        !            60: *> \endverbatim
        !            61: *>
        !            62: *> \param[in] RANGE
        !            63: *> \verbatim
        !            64: *>          RANGE is CHARACTER*1
        !            65: *>          = 'A': all eigenvalues will be found;
        !            66: *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            67: *>                 will be found;
        !            68: *>          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] UPLO
        !            72: *> \verbatim
        !            73: *>          UPLO is CHARACTER*1
        !            74: *>          = 'U':  Upper triangles of A and B are stored;
        !            75: *>          = 'L':  Lower triangles of A and B are stored.
        !            76: *> \endverbatim
        !            77: *>
        !            78: *> \param[in] N
        !            79: *> \verbatim
        !            80: *>          N is INTEGER
        !            81: *>          The order of the matrices A and B.  N >= 0.
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in] KA
        !            85: *> \verbatim
        !            86: *>          KA is INTEGER
        !            87: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            88: *>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in] KB
        !            92: *> \verbatim
        !            93: *>          KB is INTEGER
        !            94: *>          The number of superdiagonals of the matrix B if UPLO = 'U',
        !            95: *>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
        !            96: *> \endverbatim
        !            97: *>
        !            98: *> \param[in,out] AB
        !            99: *> \verbatim
        !           100: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
        !           101: *>          On entry, the upper or lower triangle of the Hermitian band
        !           102: *>          matrix A, stored in the first ka+1 rows of the array.  The
        !           103: *>          j-th column of A is stored in the j-th column of the array AB
        !           104: *>          as follows:
        !           105: *>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
        !           106: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
        !           107: *>
        !           108: *>          On exit, the contents of AB are destroyed.
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in] LDAB
        !           112: *> \verbatim
        !           113: *>          LDAB is INTEGER
        !           114: *>          The leading dimension of the array AB.  LDAB >= KA+1.
        !           115: *> \endverbatim
        !           116: *>
        !           117: *> \param[in,out] BB
        !           118: *> \verbatim
        !           119: *>          BB is COMPLEX*16 array, dimension (LDBB, N)
        !           120: *>          On entry, the upper or lower triangle of the Hermitian band
        !           121: *>          matrix B, stored in the first kb+1 rows of the array.  The
        !           122: *>          j-th column of B is stored in the j-th column of the array BB
        !           123: *>          as follows:
        !           124: *>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
        !           125: *>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
        !           126: *>
        !           127: *>          On exit, the factor S from the split Cholesky factorization
        !           128: *>          B = S**H*S, as returned by ZPBSTF.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in] LDBB
        !           132: *> \verbatim
        !           133: *>          LDBB is INTEGER
        !           134: *>          The leading dimension of the array BB.  LDBB >= KB+1.
        !           135: *> \endverbatim
        !           136: *>
        !           137: *> \param[out] Q
        !           138: *> \verbatim
        !           139: *>          Q is COMPLEX*16 array, dimension (LDQ, N)
        !           140: *>          If JOBZ = 'V', the n-by-n matrix used in the reduction of
        !           141: *>          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
        !           142: *>          and consequently C to tridiagonal form.
        !           143: *>          If JOBZ = 'N', the array Q is not referenced.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[in] LDQ
        !           147: *> \verbatim
        !           148: *>          LDQ is INTEGER
        !           149: *>          The leading dimension of the array Q.  If JOBZ = 'N',
        !           150: *>          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[in] VL
        !           154: *> \verbatim
        !           155: *>          VL is DOUBLE PRECISION
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[in] VU
        !           159: *> \verbatim
        !           160: *>          VU is DOUBLE PRECISION
        !           161: *>
        !           162: *>          If RANGE='V', the lower and upper bounds of the interval to
        !           163: *>          be searched for eigenvalues. VL < VU.
        !           164: *>          Not referenced if RANGE = 'A' or 'I'.
        !           165: *> \endverbatim
        !           166: *>
        !           167: *> \param[in] IL
        !           168: *> \verbatim
        !           169: *>          IL is INTEGER
        !           170: *> \endverbatim
        !           171: *>
        !           172: *> \param[in] IU
        !           173: *> \verbatim
        !           174: *>          IU is INTEGER
        !           175: *>
        !           176: *>          If RANGE='I', the indices (in ascending order) of the
        !           177: *>          smallest and largest eigenvalues to be returned.
        !           178: *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           179: *>          Not referenced if RANGE = 'A' or 'V'.
        !           180: *> \endverbatim
        !           181: *>
        !           182: *> \param[in] ABSTOL
        !           183: *> \verbatim
        !           184: *>          ABSTOL is DOUBLE PRECISION
        !           185: *>          The absolute error tolerance for the eigenvalues.
        !           186: *>          An approximate eigenvalue is accepted as converged
        !           187: *>          when it is determined to lie in an interval [a,b]
        !           188: *>          of width less than or equal to
        !           189: *>
        !           190: *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           191: *>
        !           192: *>          where EPS is the machine precision.  If ABSTOL is less than
        !           193: *>          or equal to zero, then  EPS*|T|  will be used in its place,
        !           194: *>          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           195: *>          by reducing AP to tridiagonal form.
        !           196: *>
        !           197: *>          Eigenvalues will be computed most accurately when ABSTOL is
        !           198: *>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
        !           199: *>          If this routine returns with INFO>0, indicating that some
        !           200: *>          eigenvectors did not converge, try setting ABSTOL to
        !           201: *>          2*DLAMCH('S').
        !           202: *> \endverbatim
        !           203: *>
        !           204: *> \param[out] M
        !           205: *> \verbatim
        !           206: *>          M is INTEGER
        !           207: *>          The total number of eigenvalues found.  0 <= M <= N.
        !           208: *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           209: *> \endverbatim
        !           210: *>
        !           211: *> \param[out] W
        !           212: *> \verbatim
        !           213: *>          W is DOUBLE PRECISION array, dimension (N)
        !           214: *>          If INFO = 0, the eigenvalues in ascending order.
        !           215: *> \endverbatim
        !           216: *>
        !           217: *> \param[out] Z
        !           218: *> \verbatim
        !           219: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
        !           220: *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !           221: *>          eigenvectors, with the i-th column of Z holding the
        !           222: *>          eigenvector associated with W(i). The eigenvectors are
        !           223: *>          normalized so that Z**H*B*Z = I.
        !           224: *>          If JOBZ = 'N', then Z is not referenced.
        !           225: *> \endverbatim
        !           226: *>
        !           227: *> \param[in] LDZ
        !           228: *> \verbatim
        !           229: *>          LDZ is INTEGER
        !           230: *>          The leading dimension of the array Z.  LDZ >= 1, and if
        !           231: *>          JOBZ = 'V', LDZ >= N.
        !           232: *> \endverbatim
        !           233: *>
        !           234: *> \param[out] WORK
        !           235: *> \verbatim
        !           236: *>          WORK is COMPLEX*16 array, dimension (N)
        !           237: *> \endverbatim
        !           238: *>
        !           239: *> \param[out] RWORK
        !           240: *> \verbatim
        !           241: *>          RWORK is DOUBLE PRECISION array, dimension (7*N)
        !           242: *> \endverbatim
        !           243: *>
        !           244: *> \param[out] IWORK
        !           245: *> \verbatim
        !           246: *>          IWORK is INTEGER array, dimension (5*N)
        !           247: *> \endverbatim
        !           248: *>
        !           249: *> \param[out] IFAIL
        !           250: *> \verbatim
        !           251: *>          IFAIL is INTEGER array, dimension (N)
        !           252: *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
        !           253: *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
        !           254: *>          indices of the eigenvectors that failed to converge.
        !           255: *>          If JOBZ = 'N', then IFAIL is not referenced.
        !           256: *> \endverbatim
        !           257: *>
        !           258: *> \param[out] INFO
        !           259: *> \verbatim
        !           260: *>          INFO is INTEGER
        !           261: *>          = 0:  successful exit
        !           262: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           263: *>          > 0:  if INFO = i, and i is:
        !           264: *>             <= N:  then i eigenvectors failed to converge.  Their
        !           265: *>                    indices are stored in array IFAIL.
        !           266: *>             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
        !           267: *>                    returned INFO = i: B is not positive definite.
        !           268: *>                    The factorization of B could not be completed and
        !           269: *>                    no eigenvalues or eigenvectors were computed.
        !           270: *> \endverbatim
        !           271: *
        !           272: *  Authors:
        !           273: *  ========
        !           274: *
        !           275: *> \author Univ. of Tennessee 
        !           276: *> \author Univ. of California Berkeley 
        !           277: *> \author Univ. of Colorado Denver 
        !           278: *> \author NAG Ltd. 
        !           279: *
        !           280: *> \date November 2011
        !           281: *
        !           282: *> \ingroup complex16OTHEReigen
        !           283: *
        !           284: *> \par Contributors:
        !           285: *  ==================
        !           286: *>
        !           287: *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           288: *
        !           289: *  =====================================================================
1.1       bertrand  290:       SUBROUTINE ZHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
                    291:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
                    292:      $                   LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
                    293: *
1.8     ! bertrand  294: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  295: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    296: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  297: *     November 2011
1.1       bertrand  298: *
                    299: *     .. Scalar Arguments ..
                    300:       CHARACTER          JOBZ, RANGE, UPLO
                    301:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
                    302:      $                   N
                    303:       DOUBLE PRECISION   ABSTOL, VL, VU
                    304: *     ..
                    305: *     .. Array Arguments ..
                    306:       INTEGER            IFAIL( * ), IWORK( * )
                    307:       DOUBLE PRECISION   RWORK( * ), W( * )
                    308:       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
                    309:      $                   WORK( * ), Z( LDZ, * )
                    310: *     ..
                    311: *
                    312: *  =====================================================================
                    313: *
                    314: *     .. Parameters ..
                    315:       DOUBLE PRECISION   ZERO
                    316:       PARAMETER          ( ZERO = 0.0D+0 )
                    317:       COMPLEX*16         CZERO, CONE
                    318:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    319:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    320: *     ..
                    321: *     .. Local Scalars ..
                    322:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
                    323:       CHARACTER          ORDER, VECT
                    324:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
                    325:      $                   INDIWK, INDRWK, INDWRK, ITMP1, J, JJ, NSPLIT
                    326:       DOUBLE PRECISION   TMP1
                    327: *     ..
                    328: *     .. External Functions ..
                    329:       LOGICAL            LSAME
                    330:       EXTERNAL           LSAME
                    331: *     ..
                    332: *     .. External Subroutines ..
                    333:       EXTERNAL           DCOPY, DSTEBZ, DSTERF, XERBLA, ZCOPY, ZGEMV,
                    334:      $                   ZHBGST, ZHBTRD, ZLACPY, ZPBSTF, ZSTEIN, ZSTEQR,
                    335:      $                   ZSWAP
                    336: *     ..
                    337: *     .. Intrinsic Functions ..
                    338:       INTRINSIC          MIN
                    339: *     ..
                    340: *     .. Executable Statements ..
                    341: *
                    342: *     Test the input parameters.
                    343: *
                    344:       WANTZ = LSAME( JOBZ, 'V' )
                    345:       UPPER = LSAME( UPLO, 'U' )
                    346:       ALLEIG = LSAME( RANGE, 'A' )
                    347:       VALEIG = LSAME( RANGE, 'V' )
                    348:       INDEIG = LSAME( RANGE, 'I' )
                    349: *
                    350:       INFO = 0
                    351:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    352:          INFO = -1
                    353:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    354:          INFO = -2
                    355:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    356:          INFO = -3
                    357:       ELSE IF( N.LT.0 ) THEN
                    358:          INFO = -4
                    359:       ELSE IF( KA.LT.0 ) THEN
                    360:          INFO = -5
                    361:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    362:          INFO = -6
                    363:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    364:          INFO = -8
                    365:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    366:          INFO = -10
                    367:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
                    368:          INFO = -12
                    369:       ELSE
                    370:          IF( VALEIG ) THEN
                    371:             IF( N.GT.0 .AND. VU.LE.VL )
                    372:      $         INFO = -14
                    373:          ELSE IF( INDEIG ) THEN
                    374:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    375:                INFO = -15
                    376:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    377:                INFO = -16
                    378:             END IF
                    379:          END IF
                    380:       END IF
                    381:       IF( INFO.EQ.0) THEN
                    382:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    383:             INFO = -21
                    384:          END IF
                    385:       END IF
                    386: *
                    387:       IF( INFO.NE.0 ) THEN
                    388:          CALL XERBLA( 'ZHBGVX', -INFO )
                    389:          RETURN
                    390:       END IF
                    391: *
                    392: *     Quick return if possible
                    393: *
                    394:       M = 0
                    395:       IF( N.EQ.0 )
                    396:      $   RETURN
                    397: *
                    398: *     Form a split Cholesky factorization of B.
                    399: *
                    400:       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    401:       IF( INFO.NE.0 ) THEN
                    402:          INFO = N + INFO
                    403:          RETURN
                    404:       END IF
                    405: *
                    406: *     Transform problem to standard eigenvalue problem.
                    407: *
                    408:       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
                    409:      $             WORK, RWORK, IINFO )
                    410: *
                    411: *     Solve the standard eigenvalue problem.
                    412: *     Reduce Hermitian band matrix to tridiagonal form.
                    413: *
                    414:       INDD = 1
                    415:       INDE = INDD + N
                    416:       INDRWK = INDE + N
                    417:       INDWRK = 1
                    418:       IF( WANTZ ) THEN
                    419:          VECT = 'U'
                    420:       ELSE
                    421:          VECT = 'N'
                    422:       END IF
                    423:       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, RWORK( INDD ),
                    424:      $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
                    425: *
                    426: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    427: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
                    428: *     eigenvalue, then try DSTEBZ.
                    429: *
                    430:       TEST = .FALSE.
                    431:       IF( INDEIG ) THEN
                    432:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    433:             TEST = .TRUE.
                    434:          END IF
                    435:       END IF
                    436:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    437:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    438:          INDEE = INDRWK + 2*N
                    439:          CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    440:          IF( .NOT.WANTZ ) THEN
                    441:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    442:          ELSE
                    443:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    444:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    445:      $                   RWORK( INDRWK ), INFO )
                    446:             IF( INFO.EQ.0 ) THEN
                    447:                DO 10 I = 1, N
                    448:                   IFAIL( I ) = 0
                    449:    10          CONTINUE
                    450:             END IF
                    451:          END IF
                    452:          IF( INFO.EQ.0 ) THEN
                    453:             M = N
                    454:             GO TO 30
                    455:          END IF
                    456:          INFO = 0
                    457:       END IF
                    458: *
                    459: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
                    460: *     call ZSTEIN.
                    461: *
                    462:       IF( WANTZ ) THEN
                    463:          ORDER = 'B'
                    464:       ELSE
                    465:          ORDER = 'E'
                    466:       END IF
                    467:       INDIBL = 1
                    468:       INDISP = INDIBL + N
                    469:       INDIWK = INDISP + N
                    470:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
                    471:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    472:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    473:      $             IWORK( INDIWK ), INFO )
                    474: *
                    475:       IF( WANTZ ) THEN
                    476:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    477:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    478:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    479: *
                    480: *        Apply unitary matrix used in reduction to tridiagonal
                    481: *        form to eigenvectors returned by ZSTEIN.
                    482: *
                    483:          DO 20 J = 1, M
                    484:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    485:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
                    486:      $                  Z( 1, J ), 1 )
                    487:    20    CONTINUE
                    488:       END IF
                    489: *
                    490:    30 CONTINUE
                    491: *
                    492: *     If eigenvalues are not in order, then sort them, along with
                    493: *     eigenvectors.
                    494: *
                    495:       IF( WANTZ ) THEN
                    496:          DO 50 J = 1, M - 1
                    497:             I = 0
                    498:             TMP1 = W( J )
                    499:             DO 40 JJ = J + 1, M
                    500:                IF( W( JJ ).LT.TMP1 ) THEN
                    501:                   I = JJ
                    502:                   TMP1 = W( JJ )
                    503:                END IF
                    504:    40       CONTINUE
                    505: *
                    506:             IF( I.NE.0 ) THEN
                    507:                ITMP1 = IWORK( INDIBL+I-1 )
                    508:                W( I ) = W( J )
                    509:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    510:                W( J ) = TMP1
                    511:                IWORK( INDIBL+J-1 ) = ITMP1
                    512:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    513:                IF( INFO.NE.0 ) THEN
                    514:                   ITMP1 = IFAIL( I )
                    515:                   IFAIL( I ) = IFAIL( J )
                    516:                   IFAIL( J ) = ITMP1
                    517:                END IF
                    518:             END IF
                    519:    50    CONTINUE
                    520:       END IF
                    521: *
                    522:       RETURN
                    523: *
                    524: *     End of ZHBGVX
                    525: *
                    526:       END

CVSweb interface <joel.bertrand@systella.fr>