Annotation of rpl/lapack/lapack/zhbgvx.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
                      2:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
                      3:      $                   LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
                     13:      $                   N
                     14:       DOUBLE PRECISION   ABSTOL, VL, VU
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       INTEGER            IFAIL( * ), IWORK( * )
                     18:       DOUBLE PRECISION   RWORK( * ), W( * )
                     19:       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
                     20:      $                   WORK( * ), Z( LDZ, * )
                     21: *     ..
                     22: *
                     23: *  Purpose
                     24: *  =======
                     25: *
                     26: *  ZHBGVX computes all the eigenvalues, and optionally, the eigenvectors
                     27: *  of a complex generalized Hermitian-definite banded eigenproblem, of
                     28: *  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
                     29: *  and banded, and B is also positive definite.  Eigenvalues and
                     30: *  eigenvectors can be selected by specifying either all eigenvalues,
                     31: *  a range of values or a range of indices for the desired eigenvalues.
                     32: *
                     33: *  Arguments
                     34: *  =========
                     35: *
                     36: *  JOBZ    (input) CHARACTER*1
                     37: *          = 'N':  Compute eigenvalues only;
                     38: *          = 'V':  Compute eigenvalues and eigenvectors.
                     39: *
                     40: *  RANGE   (input) CHARACTER*1
                     41: *          = 'A': all eigenvalues will be found;
                     42: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     43: *                 will be found;
                     44: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     45: *
                     46: *  UPLO    (input) CHARACTER*1
                     47: *          = 'U':  Upper triangles of A and B are stored;
                     48: *          = 'L':  Lower triangles of A and B are stored.
                     49: *
                     50: *  N       (input) INTEGER
                     51: *          The order of the matrices A and B.  N >= 0.
                     52: *
                     53: *  KA      (input) INTEGER
                     54: *          The number of superdiagonals of the matrix A if UPLO = 'U',
                     55: *          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
                     56: *
                     57: *  KB      (input) INTEGER
                     58: *          The number of superdiagonals of the matrix B if UPLO = 'U',
                     59: *          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
                     60: *
                     61: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
                     62: *          On entry, the upper or lower triangle of the Hermitian band
                     63: *          matrix A, stored in the first ka+1 rows of the array.  The
                     64: *          j-th column of A is stored in the j-th column of the array AB
                     65: *          as follows:
                     66: *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
                     67: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
                     68: *
                     69: *          On exit, the contents of AB are destroyed.
                     70: *
                     71: *  LDAB    (input) INTEGER
                     72: *          The leading dimension of the array AB.  LDAB >= KA+1.
                     73: *
                     74: *  BB      (input/output) COMPLEX*16 array, dimension (LDBB, N)
                     75: *          On entry, the upper or lower triangle of the Hermitian band
                     76: *          matrix B, stored in the first kb+1 rows of the array.  The
                     77: *          j-th column of B is stored in the j-th column of the array BB
                     78: *          as follows:
                     79: *          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
                     80: *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
                     81: *
                     82: *          On exit, the factor S from the split Cholesky factorization
                     83: *          B = S**H*S, as returned by ZPBSTF.
                     84: *
                     85: *  LDBB    (input) INTEGER
                     86: *          The leading dimension of the array BB.  LDBB >= KB+1.
                     87: *
                     88: *  Q       (output) COMPLEX*16 array, dimension (LDQ, N)
                     89: *          If JOBZ = 'V', the n-by-n matrix used in the reduction of
                     90: *          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
                     91: *          and consequently C to tridiagonal form.
                     92: *          If JOBZ = 'N', the array Q is not referenced.
                     93: *
                     94: *  LDQ     (input) INTEGER
                     95: *          The leading dimension of the array Q.  If JOBZ = 'N',
                     96: *          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
                     97: *
                     98: *  VL      (input) DOUBLE PRECISION
                     99: *  VU      (input) DOUBLE PRECISION
                    100: *          If RANGE='V', the lower and upper bounds of the interval to
                    101: *          be searched for eigenvalues. VL < VU.
                    102: *          Not referenced if RANGE = 'A' or 'I'.
                    103: *
                    104: *  IL      (input) INTEGER
                    105: *  IU      (input) INTEGER
                    106: *          If RANGE='I', the indices (in ascending order) of the
                    107: *          smallest and largest eigenvalues to be returned.
                    108: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                    109: *          Not referenced if RANGE = 'A' or 'V'.
                    110: *
                    111: *  ABSTOL  (input) DOUBLE PRECISION
                    112: *          The absolute error tolerance for the eigenvalues.
                    113: *          An approximate eigenvalue is accepted as converged
                    114: *          when it is determined to lie in an interval [a,b]
                    115: *          of width less than or equal to
                    116: *
                    117: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                    118: *
                    119: *          where EPS is the machine precision.  If ABSTOL is less than
                    120: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    121: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    122: *          by reducing AP to tridiagonal form.
                    123: *
                    124: *          Eigenvalues will be computed most accurately when ABSTOL is
                    125: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    126: *          If this routine returns with INFO>0, indicating that some
                    127: *          eigenvectors did not converge, try setting ABSTOL to
                    128: *          2*DLAMCH('S').
                    129: *
                    130: *  M       (output) INTEGER
                    131: *          The total number of eigenvalues found.  0 <= M <= N.
                    132: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    133: *
                    134: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    135: *          If INFO = 0, the eigenvalues in ascending order.
                    136: *
                    137: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
                    138: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                    139: *          eigenvectors, with the i-th column of Z holding the
                    140: *          eigenvector associated with W(i). The eigenvectors are
                    141: *          normalized so that Z**H*B*Z = I.
                    142: *          If JOBZ = 'N', then Z is not referenced.
                    143: *
                    144: *  LDZ     (input) INTEGER
                    145: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    146: *          JOBZ = 'V', LDZ >= N.
                    147: *
                    148: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
                    149: *
                    150: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
                    151: *
                    152: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    153: *
                    154: *  IFAIL   (output) INTEGER array, dimension (N)
                    155: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    156: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    157: *          indices of the eigenvectors that failed to converge.
                    158: *          If JOBZ = 'N', then IFAIL is not referenced.
                    159: *
                    160: *  INFO    (output) INTEGER
                    161: *          = 0:  successful exit
                    162: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    163: *          > 0:  if INFO = i, and i is:
                    164: *             <= N:  then i eigenvectors failed to converge.  Their
                    165: *                    indices are stored in array IFAIL.
                    166: *             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
                    167: *                    returned INFO = i: B is not positive definite.
                    168: *                    The factorization of B could not be completed and
                    169: *                    no eigenvalues or eigenvectors were computed.
                    170: *
                    171: *  Further Details
                    172: *  ===============
                    173: *
                    174: *  Based on contributions by
                    175: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    176: *
                    177: *  =====================================================================
                    178: *
                    179: *     .. Parameters ..
                    180:       DOUBLE PRECISION   ZERO
                    181:       PARAMETER          ( ZERO = 0.0D+0 )
                    182:       COMPLEX*16         CZERO, CONE
                    183:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    184:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    185: *     ..
                    186: *     .. Local Scalars ..
                    187:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
                    188:       CHARACTER          ORDER, VECT
                    189:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
                    190:      $                   INDIWK, INDRWK, INDWRK, ITMP1, J, JJ, NSPLIT
                    191:       DOUBLE PRECISION   TMP1
                    192: *     ..
                    193: *     .. External Functions ..
                    194:       LOGICAL            LSAME
                    195:       EXTERNAL           LSAME
                    196: *     ..
                    197: *     .. External Subroutines ..
                    198:       EXTERNAL           DCOPY, DSTEBZ, DSTERF, XERBLA, ZCOPY, ZGEMV,
                    199:      $                   ZHBGST, ZHBTRD, ZLACPY, ZPBSTF, ZSTEIN, ZSTEQR,
                    200:      $                   ZSWAP
                    201: *     ..
                    202: *     .. Intrinsic Functions ..
                    203:       INTRINSIC          MIN
                    204: *     ..
                    205: *     .. Executable Statements ..
                    206: *
                    207: *     Test the input parameters.
                    208: *
                    209:       WANTZ = LSAME( JOBZ, 'V' )
                    210:       UPPER = LSAME( UPLO, 'U' )
                    211:       ALLEIG = LSAME( RANGE, 'A' )
                    212:       VALEIG = LSAME( RANGE, 'V' )
                    213:       INDEIG = LSAME( RANGE, 'I' )
                    214: *
                    215:       INFO = 0
                    216:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    217:          INFO = -1
                    218:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    219:          INFO = -2
                    220:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    221:          INFO = -3
                    222:       ELSE IF( N.LT.0 ) THEN
                    223:          INFO = -4
                    224:       ELSE IF( KA.LT.0 ) THEN
                    225:          INFO = -5
                    226:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
                    227:          INFO = -6
                    228:       ELSE IF( LDAB.LT.KA+1 ) THEN
                    229:          INFO = -8
                    230:       ELSE IF( LDBB.LT.KB+1 ) THEN
                    231:          INFO = -10
                    232:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
                    233:          INFO = -12
                    234:       ELSE
                    235:          IF( VALEIG ) THEN
                    236:             IF( N.GT.0 .AND. VU.LE.VL )
                    237:      $         INFO = -14
                    238:          ELSE IF( INDEIG ) THEN
                    239:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    240:                INFO = -15
                    241:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    242:                INFO = -16
                    243:             END IF
                    244:          END IF
                    245:       END IF
                    246:       IF( INFO.EQ.0) THEN
                    247:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    248:             INFO = -21
                    249:          END IF
                    250:       END IF
                    251: *
                    252:       IF( INFO.NE.0 ) THEN
                    253:          CALL XERBLA( 'ZHBGVX', -INFO )
                    254:          RETURN
                    255:       END IF
                    256: *
                    257: *     Quick return if possible
                    258: *
                    259:       M = 0
                    260:       IF( N.EQ.0 )
                    261:      $   RETURN
                    262: *
                    263: *     Form a split Cholesky factorization of B.
                    264: *
                    265:       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
                    266:       IF( INFO.NE.0 ) THEN
                    267:          INFO = N + INFO
                    268:          RETURN
                    269:       END IF
                    270: *
                    271: *     Transform problem to standard eigenvalue problem.
                    272: *
                    273:       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
                    274:      $             WORK, RWORK, IINFO )
                    275: *
                    276: *     Solve the standard eigenvalue problem.
                    277: *     Reduce Hermitian band matrix to tridiagonal form.
                    278: *
                    279:       INDD = 1
                    280:       INDE = INDD + N
                    281:       INDRWK = INDE + N
                    282:       INDWRK = 1
                    283:       IF( WANTZ ) THEN
                    284:          VECT = 'U'
                    285:       ELSE
                    286:          VECT = 'N'
                    287:       END IF
                    288:       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, RWORK( INDD ),
                    289:      $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
                    290: *
                    291: *     If all eigenvalues are desired and ABSTOL is less than or equal
                    292: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
                    293: *     eigenvalue, then try DSTEBZ.
                    294: *
                    295:       TEST = .FALSE.
                    296:       IF( INDEIG ) THEN
                    297:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    298:             TEST = .TRUE.
                    299:          END IF
                    300:       END IF
                    301:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    302:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    303:          INDEE = INDRWK + 2*N
                    304:          CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    305:          IF( .NOT.WANTZ ) THEN
                    306:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    307:          ELSE
                    308:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
                    309:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    310:      $                   RWORK( INDRWK ), INFO )
                    311:             IF( INFO.EQ.0 ) THEN
                    312:                DO 10 I = 1, N
                    313:                   IFAIL( I ) = 0
                    314:    10          CONTINUE
                    315:             END IF
                    316:          END IF
                    317:          IF( INFO.EQ.0 ) THEN
                    318:             M = N
                    319:             GO TO 30
                    320:          END IF
                    321:          INFO = 0
                    322:       END IF
                    323: *
                    324: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
                    325: *     call ZSTEIN.
                    326: *
                    327:       IF( WANTZ ) THEN
                    328:          ORDER = 'B'
                    329:       ELSE
                    330:          ORDER = 'E'
                    331:       END IF
                    332:       INDIBL = 1
                    333:       INDISP = INDIBL + N
                    334:       INDIWK = INDISP + N
                    335:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
                    336:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    337:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    338:      $             IWORK( INDIWK ), INFO )
                    339: *
                    340:       IF( WANTZ ) THEN
                    341:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    342:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    343:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    344: *
                    345: *        Apply unitary matrix used in reduction to tridiagonal
                    346: *        form to eigenvectors returned by ZSTEIN.
                    347: *
                    348:          DO 20 J = 1, M
                    349:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
                    350:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
                    351:      $                  Z( 1, J ), 1 )
                    352:    20    CONTINUE
                    353:       END IF
                    354: *
                    355:    30 CONTINUE
                    356: *
                    357: *     If eigenvalues are not in order, then sort them, along with
                    358: *     eigenvectors.
                    359: *
                    360:       IF( WANTZ ) THEN
                    361:          DO 50 J = 1, M - 1
                    362:             I = 0
                    363:             TMP1 = W( J )
                    364:             DO 40 JJ = J + 1, M
                    365:                IF( W( JJ ).LT.TMP1 ) THEN
                    366:                   I = JJ
                    367:                   TMP1 = W( JJ )
                    368:                END IF
                    369:    40       CONTINUE
                    370: *
                    371:             IF( I.NE.0 ) THEN
                    372:                ITMP1 = IWORK( INDIBL+I-1 )
                    373:                W( I ) = W( J )
                    374:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    375:                W( J ) = TMP1
                    376:                IWORK( INDIBL+J-1 ) = ITMP1
                    377:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    378:                IF( INFO.NE.0 ) THEN
                    379:                   ITMP1 = IFAIL( I )
                    380:                   IFAIL( I ) = IFAIL( J )
                    381:                   IFAIL( J ) = ITMP1
                    382:                END IF
                    383:             END IF
                    384:    50    CONTINUE
                    385:       END IF
                    386: *
                    387:       RETURN
                    388: *
                    389: *     End of ZHBGVX
                    390: *
                    391:       END

CVSweb interface <joel.bertrand@systella.fr>