Annotation of rpl/lapack/lapack/zhbgvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHBGVX( JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB,
        !             2:      $                   LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z,
        !             3:      $                   LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBZ, RANGE, UPLO
        !            12:       INTEGER            IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M,
        !            13:      $                   N
        !            14:       DOUBLE PRECISION   ABSTOL, VL, VU
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       INTEGER            IFAIL( * ), IWORK( * )
        !            18:       DOUBLE PRECISION   RWORK( * ), W( * )
        !            19:       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ),
        !            20:      $                   WORK( * ), Z( LDZ, * )
        !            21: *     ..
        !            22: *
        !            23: *  Purpose
        !            24: *  =======
        !            25: *
        !            26: *  ZHBGVX computes all the eigenvalues, and optionally, the eigenvectors
        !            27: *  of a complex generalized Hermitian-definite banded eigenproblem, of
        !            28: *  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
        !            29: *  and banded, and B is also positive definite.  Eigenvalues and
        !            30: *  eigenvectors can be selected by specifying either all eigenvalues,
        !            31: *  a range of values or a range of indices for the desired eigenvalues.
        !            32: *
        !            33: *  Arguments
        !            34: *  =========
        !            35: *
        !            36: *  JOBZ    (input) CHARACTER*1
        !            37: *          = 'N':  Compute eigenvalues only;
        !            38: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            39: *
        !            40: *  RANGE   (input) CHARACTER*1
        !            41: *          = 'A': all eigenvalues will be found;
        !            42: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
        !            43: *                 will be found;
        !            44: *          = 'I': the IL-th through IU-th eigenvalues will be found.
        !            45: *
        !            46: *  UPLO    (input) CHARACTER*1
        !            47: *          = 'U':  Upper triangles of A and B are stored;
        !            48: *          = 'L':  Lower triangles of A and B are stored.
        !            49: *
        !            50: *  N       (input) INTEGER
        !            51: *          The order of the matrices A and B.  N >= 0.
        !            52: *
        !            53: *  KA      (input) INTEGER
        !            54: *          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            55: *          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
        !            56: *
        !            57: *  KB      (input) INTEGER
        !            58: *          The number of superdiagonals of the matrix B if UPLO = 'U',
        !            59: *          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
        !            60: *
        !            61: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
        !            62: *          On entry, the upper or lower triangle of the Hermitian band
        !            63: *          matrix A, stored in the first ka+1 rows of the array.  The
        !            64: *          j-th column of A is stored in the j-th column of the array AB
        !            65: *          as follows:
        !            66: *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
        !            67: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
        !            68: *
        !            69: *          On exit, the contents of AB are destroyed.
        !            70: *
        !            71: *  LDAB    (input) INTEGER
        !            72: *          The leading dimension of the array AB.  LDAB >= KA+1.
        !            73: *
        !            74: *  BB      (input/output) COMPLEX*16 array, dimension (LDBB, N)
        !            75: *          On entry, the upper or lower triangle of the Hermitian band
        !            76: *          matrix B, stored in the first kb+1 rows of the array.  The
        !            77: *          j-th column of B is stored in the j-th column of the array BB
        !            78: *          as follows:
        !            79: *          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
        !            80: *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
        !            81: *
        !            82: *          On exit, the factor S from the split Cholesky factorization
        !            83: *          B = S**H*S, as returned by ZPBSTF.
        !            84: *
        !            85: *  LDBB    (input) INTEGER
        !            86: *          The leading dimension of the array BB.  LDBB >= KB+1.
        !            87: *
        !            88: *  Q       (output) COMPLEX*16 array, dimension (LDQ, N)
        !            89: *          If JOBZ = 'V', the n-by-n matrix used in the reduction of
        !            90: *          A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x,
        !            91: *          and consequently C to tridiagonal form.
        !            92: *          If JOBZ = 'N', the array Q is not referenced.
        !            93: *
        !            94: *  LDQ     (input) INTEGER
        !            95: *          The leading dimension of the array Q.  If JOBZ = 'N',
        !            96: *          LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
        !            97: *
        !            98: *  VL      (input) DOUBLE PRECISION
        !            99: *  VU      (input) DOUBLE PRECISION
        !           100: *          If RANGE='V', the lower and upper bounds of the interval to
        !           101: *          be searched for eigenvalues. VL < VU.
        !           102: *          Not referenced if RANGE = 'A' or 'I'.
        !           103: *
        !           104: *  IL      (input) INTEGER
        !           105: *  IU      (input) INTEGER
        !           106: *          If RANGE='I', the indices (in ascending order) of the
        !           107: *          smallest and largest eigenvalues to be returned.
        !           108: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
        !           109: *          Not referenced if RANGE = 'A' or 'V'.
        !           110: *
        !           111: *  ABSTOL  (input) DOUBLE PRECISION
        !           112: *          The absolute error tolerance for the eigenvalues.
        !           113: *          An approximate eigenvalue is accepted as converged
        !           114: *          when it is determined to lie in an interval [a,b]
        !           115: *          of width less than or equal to
        !           116: *
        !           117: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
        !           118: *
        !           119: *          where EPS is the machine precision.  If ABSTOL is less than
        !           120: *          or equal to zero, then  EPS*|T|  will be used in its place,
        !           121: *          where |T| is the 1-norm of the tridiagonal matrix obtained
        !           122: *          by reducing AP to tridiagonal form.
        !           123: *
        !           124: *          Eigenvalues will be computed most accurately when ABSTOL is
        !           125: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
        !           126: *          If this routine returns with INFO>0, indicating that some
        !           127: *          eigenvectors did not converge, try setting ABSTOL to
        !           128: *          2*DLAMCH('S').
        !           129: *
        !           130: *  M       (output) INTEGER
        !           131: *          The total number of eigenvalues found.  0 <= M <= N.
        !           132: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
        !           133: *
        !           134: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !           135: *          If INFO = 0, the eigenvalues in ascending order.
        !           136: *
        !           137: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
        !           138: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !           139: *          eigenvectors, with the i-th column of Z holding the
        !           140: *          eigenvector associated with W(i). The eigenvectors are
        !           141: *          normalized so that Z**H*B*Z = I.
        !           142: *          If JOBZ = 'N', then Z is not referenced.
        !           143: *
        !           144: *  LDZ     (input) INTEGER
        !           145: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !           146: *          JOBZ = 'V', LDZ >= N.
        !           147: *
        !           148: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
        !           149: *
        !           150: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
        !           151: *
        !           152: *  IWORK   (workspace) INTEGER array, dimension (5*N)
        !           153: *
        !           154: *  IFAIL   (output) INTEGER array, dimension (N)
        !           155: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
        !           156: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
        !           157: *          indices of the eigenvectors that failed to converge.
        !           158: *          If JOBZ = 'N', then IFAIL is not referenced.
        !           159: *
        !           160: *  INFO    (output) INTEGER
        !           161: *          = 0:  successful exit
        !           162: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           163: *          > 0:  if INFO = i, and i is:
        !           164: *             <= N:  then i eigenvectors failed to converge.  Their
        !           165: *                    indices are stored in array IFAIL.
        !           166: *             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
        !           167: *                    returned INFO = i: B is not positive definite.
        !           168: *                    The factorization of B could not be completed and
        !           169: *                    no eigenvalues or eigenvectors were computed.
        !           170: *
        !           171: *  Further Details
        !           172: *  ===============
        !           173: *
        !           174: *  Based on contributions by
        !           175: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           176: *
        !           177: *  =====================================================================
        !           178: *
        !           179: *     .. Parameters ..
        !           180:       DOUBLE PRECISION   ZERO
        !           181:       PARAMETER          ( ZERO = 0.0D+0 )
        !           182:       COMPLEX*16         CZERO, CONE
        !           183:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
        !           184:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
        !           185: *     ..
        !           186: *     .. Local Scalars ..
        !           187:       LOGICAL            ALLEIG, INDEIG, TEST, UPPER, VALEIG, WANTZ
        !           188:       CHARACTER          ORDER, VECT
        !           189:       INTEGER            I, IINFO, INDD, INDE, INDEE, INDIBL, INDISP,
        !           190:      $                   INDIWK, INDRWK, INDWRK, ITMP1, J, JJ, NSPLIT
        !           191:       DOUBLE PRECISION   TMP1
        !           192: *     ..
        !           193: *     .. External Functions ..
        !           194:       LOGICAL            LSAME
        !           195:       EXTERNAL           LSAME
        !           196: *     ..
        !           197: *     .. External Subroutines ..
        !           198:       EXTERNAL           DCOPY, DSTEBZ, DSTERF, XERBLA, ZCOPY, ZGEMV,
        !           199:      $                   ZHBGST, ZHBTRD, ZLACPY, ZPBSTF, ZSTEIN, ZSTEQR,
        !           200:      $                   ZSWAP
        !           201: *     ..
        !           202: *     .. Intrinsic Functions ..
        !           203:       INTRINSIC          MIN
        !           204: *     ..
        !           205: *     .. Executable Statements ..
        !           206: *
        !           207: *     Test the input parameters.
        !           208: *
        !           209:       WANTZ = LSAME( JOBZ, 'V' )
        !           210:       UPPER = LSAME( UPLO, 'U' )
        !           211:       ALLEIG = LSAME( RANGE, 'A' )
        !           212:       VALEIG = LSAME( RANGE, 'V' )
        !           213:       INDEIG = LSAME( RANGE, 'I' )
        !           214: *
        !           215:       INFO = 0
        !           216:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           217:          INFO = -1
        !           218:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
        !           219:          INFO = -2
        !           220:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           221:          INFO = -3
        !           222:       ELSE IF( N.LT.0 ) THEN
        !           223:          INFO = -4
        !           224:       ELSE IF( KA.LT.0 ) THEN
        !           225:          INFO = -5
        !           226:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
        !           227:          INFO = -6
        !           228:       ELSE IF( LDAB.LT.KA+1 ) THEN
        !           229:          INFO = -8
        !           230:       ELSE IF( LDBB.LT.KB+1 ) THEN
        !           231:          INFO = -10
        !           232:       ELSE IF( LDQ.LT.1 .OR. ( WANTZ .AND. LDQ.LT.N ) ) THEN
        !           233:          INFO = -12
        !           234:       ELSE
        !           235:          IF( VALEIG ) THEN
        !           236:             IF( N.GT.0 .AND. VU.LE.VL )
        !           237:      $         INFO = -14
        !           238:          ELSE IF( INDEIG ) THEN
        !           239:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
        !           240:                INFO = -15
        !           241:             ELSE IF ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
        !           242:                INFO = -16
        !           243:             END IF
        !           244:          END IF
        !           245:       END IF
        !           246:       IF( INFO.EQ.0) THEN
        !           247:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           248:             INFO = -21
        !           249:          END IF
        !           250:       END IF
        !           251: *
        !           252:       IF( INFO.NE.0 ) THEN
        !           253:          CALL XERBLA( 'ZHBGVX', -INFO )
        !           254:          RETURN
        !           255:       END IF
        !           256: *
        !           257: *     Quick return if possible
        !           258: *
        !           259:       M = 0
        !           260:       IF( N.EQ.0 )
        !           261:      $   RETURN
        !           262: *
        !           263: *     Form a split Cholesky factorization of B.
        !           264: *
        !           265:       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
        !           266:       IF( INFO.NE.0 ) THEN
        !           267:          INFO = N + INFO
        !           268:          RETURN
        !           269:       END IF
        !           270: *
        !           271: *     Transform problem to standard eigenvalue problem.
        !           272: *
        !           273:       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ,
        !           274:      $             WORK, RWORK, IINFO )
        !           275: *
        !           276: *     Solve the standard eigenvalue problem.
        !           277: *     Reduce Hermitian band matrix to tridiagonal form.
        !           278: *
        !           279:       INDD = 1
        !           280:       INDE = INDD + N
        !           281:       INDRWK = INDE + N
        !           282:       INDWRK = 1
        !           283:       IF( WANTZ ) THEN
        !           284:          VECT = 'U'
        !           285:       ELSE
        !           286:          VECT = 'N'
        !           287:       END IF
        !           288:       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, RWORK( INDD ),
        !           289:      $             RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
        !           290: *
        !           291: *     If all eigenvalues are desired and ABSTOL is less than or equal
        !           292: *     to zero, then call DSTERF or ZSTEQR.  If this fails for some
        !           293: *     eigenvalue, then try DSTEBZ.
        !           294: *
        !           295:       TEST = .FALSE.
        !           296:       IF( INDEIG ) THEN
        !           297:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
        !           298:             TEST = .TRUE.
        !           299:          END IF
        !           300:       END IF
        !           301:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
        !           302:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
        !           303:          INDEE = INDRWK + 2*N
        !           304:          CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
        !           305:          IF( .NOT.WANTZ ) THEN
        !           306:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
        !           307:          ELSE
        !           308:             CALL ZLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
        !           309:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
        !           310:      $                   RWORK( INDRWK ), INFO )
        !           311:             IF( INFO.EQ.0 ) THEN
        !           312:                DO 10 I = 1, N
        !           313:                   IFAIL( I ) = 0
        !           314:    10          CONTINUE
        !           315:             END IF
        !           316:          END IF
        !           317:          IF( INFO.EQ.0 ) THEN
        !           318:             M = N
        !           319:             GO TO 30
        !           320:          END IF
        !           321:          INFO = 0
        !           322:       END IF
        !           323: *
        !           324: *     Otherwise, call DSTEBZ and, if eigenvectors are desired,
        !           325: *     call ZSTEIN.
        !           326: *
        !           327:       IF( WANTZ ) THEN
        !           328:          ORDER = 'B'
        !           329:       ELSE
        !           330:          ORDER = 'E'
        !           331:       END IF
        !           332:       INDIBL = 1
        !           333:       INDISP = INDIBL + N
        !           334:       INDIWK = INDISP + N
        !           335:       CALL DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL,
        !           336:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
        !           337:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
        !           338:      $             IWORK( INDIWK ), INFO )
        !           339: *
        !           340:       IF( WANTZ ) THEN
        !           341:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
        !           342:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
        !           343:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
        !           344: *
        !           345: *        Apply unitary matrix used in reduction to tridiagonal
        !           346: *        form to eigenvectors returned by ZSTEIN.
        !           347: *
        !           348:          DO 20 J = 1, M
        !           349:             CALL ZCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
        !           350:             CALL ZGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
        !           351:      $                  Z( 1, J ), 1 )
        !           352:    20    CONTINUE
        !           353:       END IF
        !           354: *
        !           355:    30 CONTINUE
        !           356: *
        !           357: *     If eigenvalues are not in order, then sort them, along with
        !           358: *     eigenvectors.
        !           359: *
        !           360:       IF( WANTZ ) THEN
        !           361:          DO 50 J = 1, M - 1
        !           362:             I = 0
        !           363:             TMP1 = W( J )
        !           364:             DO 40 JJ = J + 1, M
        !           365:                IF( W( JJ ).LT.TMP1 ) THEN
        !           366:                   I = JJ
        !           367:                   TMP1 = W( JJ )
        !           368:                END IF
        !           369:    40       CONTINUE
        !           370: *
        !           371:             IF( I.NE.0 ) THEN
        !           372:                ITMP1 = IWORK( INDIBL+I-1 )
        !           373:                W( I ) = W( J )
        !           374:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
        !           375:                W( J ) = TMP1
        !           376:                IWORK( INDIBL+J-1 ) = ITMP1
        !           377:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
        !           378:                IF( INFO.NE.0 ) THEN
        !           379:                   ITMP1 = IFAIL( I )
        !           380:                   IFAIL( I ) = IFAIL( J )
        !           381:                   IFAIL( J ) = ITMP1
        !           382:                END IF
        !           383:             END IF
        !           384:    50    CONTINUE
        !           385:       END IF
        !           386: *
        !           387:       RETURN
        !           388: *
        !           389: *     End of ZHBGVX
        !           390: *
        !           391:       END

CVSweb interface <joel.bertrand@systella.fr>