Annotation of rpl/lapack/lapack/zhbgvd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
        !             2:      $                   Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
        !             3:      $                   LIWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBZ, UPLO
        !            12:       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
        !            13:      $                   LWORK, N
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IWORK( * )
        !            17:       DOUBLE PRECISION   RWORK( * ), W( * )
        !            18:       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
        !            19:      $                   Z( LDZ, * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors
        !            26: *  of a complex generalized Hermitian-definite banded eigenproblem, of
        !            27: *  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
        !            28: *  and banded, and B is also positive definite.  If eigenvectors are
        !            29: *  desired, it uses a divide and conquer algorithm.
        !            30: *
        !            31: *  The divide and conquer algorithm makes very mild assumptions about
        !            32: *  floating point arithmetic. It will work on machines with a guard
        !            33: *  digit in add/subtract, or on those binary machines without guard
        !            34: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            35: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            36: *  without guard digits, but we know of none.
        !            37: *
        !            38: *  Arguments
        !            39: *  =========
        !            40: *
        !            41: *  JOBZ    (input) CHARACTER*1
        !            42: *          = 'N':  Compute eigenvalues only;
        !            43: *          = 'V':  Compute eigenvalues and eigenvectors.
        !            44: *
        !            45: *  UPLO    (input) CHARACTER*1
        !            46: *          = 'U':  Upper triangles of A and B are stored;
        !            47: *          = 'L':  Lower triangles of A and B are stored.
        !            48: *
        !            49: *  N       (input) INTEGER
        !            50: *          The order of the matrices A and B.  N >= 0.
        !            51: *
        !            52: *  KA      (input) INTEGER
        !            53: *          The number of superdiagonals of the matrix A if UPLO = 'U',
        !            54: *          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
        !            55: *
        !            56: *  KB      (input) INTEGER
        !            57: *          The number of superdiagonals of the matrix B if UPLO = 'U',
        !            58: *          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
        !            59: *
        !            60: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
        !            61: *          On entry, the upper or lower triangle of the Hermitian band
        !            62: *          matrix A, stored in the first ka+1 rows of the array.  The
        !            63: *          j-th column of A is stored in the j-th column of the array AB
        !            64: *          as follows:
        !            65: *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
        !            66: *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
        !            67: *
        !            68: *          On exit, the contents of AB are destroyed.
        !            69: *
        !            70: *  LDAB    (input) INTEGER
        !            71: *          The leading dimension of the array AB.  LDAB >= KA+1.
        !            72: *
        !            73: *  BB      (input/output) COMPLEX*16 array, dimension (LDBB, N)
        !            74: *          On entry, the upper or lower triangle of the Hermitian band
        !            75: *          matrix B, stored in the first kb+1 rows of the array.  The
        !            76: *          j-th column of B is stored in the j-th column of the array BB
        !            77: *          as follows:
        !            78: *          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
        !            79: *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
        !            80: *
        !            81: *          On exit, the factor S from the split Cholesky factorization
        !            82: *          B = S**H*S, as returned by ZPBSTF.
        !            83: *
        !            84: *  LDBB    (input) INTEGER
        !            85: *          The leading dimension of the array BB.  LDBB >= KB+1.
        !            86: *
        !            87: *  W       (output) DOUBLE PRECISION array, dimension (N)
        !            88: *          If INFO = 0, the eigenvalues in ascending order.
        !            89: *
        !            90: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
        !            91: *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
        !            92: *          eigenvectors, with the i-th column of Z holding the
        !            93: *          eigenvector associated with W(i). The eigenvectors are
        !            94: *          normalized so that Z**H*B*Z = I.
        !            95: *          If JOBZ = 'N', then Z is not referenced.
        !            96: *
        !            97: *  LDZ     (input) INTEGER
        !            98: *          The leading dimension of the array Z.  LDZ >= 1, and if
        !            99: *          JOBZ = 'V', LDZ >= N.
        !           100: *
        !           101: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           102: *          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
        !           103: *
        !           104: *  LWORK   (input) INTEGER
        !           105: *          The dimension of the array WORK.
        !           106: *          If N <= 1,               LWORK >= 1.
        !           107: *          If JOBZ = 'N' and N > 1, LWORK >= N.
        !           108: *          If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
        !           109: *
        !           110: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           111: *          only calculates the optimal sizes of the WORK, RWORK and
        !           112: *          IWORK arrays, returns these values as the first entries of
        !           113: *          the WORK, RWORK and IWORK arrays, and no error message
        !           114: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           115: *
        !           116: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
        !           117: *          On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
        !           118: *
        !           119: *  LRWORK  (input) INTEGER
        !           120: *          The dimension of array RWORK.
        !           121: *          If N <= 1,               LRWORK >= 1.
        !           122: *          If JOBZ = 'N' and N > 1, LRWORK >= N.
        !           123: *          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
        !           124: *
        !           125: *          If LRWORK = -1, then a workspace query is assumed; the
        !           126: *          routine only calculates the optimal sizes of the WORK, RWORK
        !           127: *          and IWORK arrays, returns these values as the first entries
        !           128: *          of the WORK, RWORK and IWORK arrays, and no error message
        !           129: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           130: *
        !           131: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           132: *          On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
        !           133: *
        !           134: *  LIWORK  (input) INTEGER
        !           135: *          The dimension of array IWORK.
        !           136: *          If JOBZ = 'N' or N <= 1, LIWORK >= 1.
        !           137: *          If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
        !           138: *
        !           139: *          If LIWORK = -1, then a workspace query is assumed; the
        !           140: *          routine only calculates the optimal sizes of the WORK, RWORK
        !           141: *          and IWORK arrays, returns these values as the first entries
        !           142: *          of the WORK, RWORK and IWORK arrays, and no error message
        !           143: *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
        !           144: *
        !           145: *  INFO    (output) INTEGER
        !           146: *          = 0:  successful exit
        !           147: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           148: *          > 0:  if INFO = i, and i is:
        !           149: *             <= N:  the algorithm failed to converge:
        !           150: *                    i off-diagonal elements of an intermediate
        !           151: *                    tridiagonal form did not converge to zero;
        !           152: *             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
        !           153: *                    returned INFO = i: B is not positive definite.
        !           154: *                    The factorization of B could not be completed and
        !           155: *                    no eigenvalues or eigenvectors were computed.
        !           156: *
        !           157: *  Further Details
        !           158: *  ===============
        !           159: *
        !           160: *  Based on contributions by
        !           161: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
        !           162: *
        !           163: *  =====================================================================
        !           164: *
        !           165: *     .. Parameters ..
        !           166:       COMPLEX*16         CONE, CZERO
        !           167:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
        !           168:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
        !           169: *     ..
        !           170: *     .. Local Scalars ..
        !           171:       LOGICAL            LQUERY, UPPER, WANTZ
        !           172:       CHARACTER          VECT
        !           173:       INTEGER            IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLRWK,
        !           174:      $                   LLWK2, LRWMIN, LWMIN
        !           175: *     ..
        !           176: *     .. External Functions ..
        !           177:       LOGICAL            LSAME
        !           178:       EXTERNAL           LSAME
        !           179: *     ..
        !           180: *     .. External Subroutines ..
        !           181:       EXTERNAL           DSTERF, XERBLA, ZGEMM, ZHBGST, ZHBTRD, ZLACPY,
        !           182:      $                   ZPBSTF, ZSTEDC
        !           183: *     ..
        !           184: *     .. Executable Statements ..
        !           185: *
        !           186: *     Test the input parameters.
        !           187: *
        !           188:       WANTZ = LSAME( JOBZ, 'V' )
        !           189:       UPPER = LSAME( UPLO, 'U' )
        !           190:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           191: *
        !           192:       INFO = 0
        !           193:       IF( N.LE.1 ) THEN
        !           194:          LWMIN = 1
        !           195:          LRWMIN = 1
        !           196:          LIWMIN = 1
        !           197:       ELSE IF( WANTZ ) THEN
        !           198:          LWMIN = 2*N**2
        !           199:          LRWMIN = 1 + 5*N + 2*N**2
        !           200:          LIWMIN = 3 + 5*N
        !           201:       ELSE
        !           202:          LWMIN = N
        !           203:          LRWMIN = N
        !           204:          LIWMIN = 1
        !           205:       END IF
        !           206:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
        !           207:          INFO = -1
        !           208:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
        !           209:          INFO = -2
        !           210:       ELSE IF( N.LT.0 ) THEN
        !           211:          INFO = -3
        !           212:       ELSE IF( KA.LT.0 ) THEN
        !           213:          INFO = -4
        !           214:       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
        !           215:          INFO = -5
        !           216:       ELSE IF( LDAB.LT.KA+1 ) THEN
        !           217:          INFO = -7
        !           218:       ELSE IF( LDBB.LT.KB+1 ) THEN
        !           219:          INFO = -9
        !           220:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           221:          INFO = -12
        !           222:       END IF
        !           223: *
        !           224:       IF( INFO.EQ.0 ) THEN
        !           225:          WORK( 1 ) = LWMIN
        !           226:          RWORK( 1 ) = LRWMIN
        !           227:          IWORK( 1 ) = LIWMIN
        !           228: *
        !           229:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           230:             INFO = -14
        !           231:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
        !           232:             INFO = -16
        !           233:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           234:             INFO = -18
        !           235:          END IF
        !           236:       END IF
        !           237: *
        !           238:       IF( INFO.NE.0 ) THEN
        !           239:          CALL XERBLA( 'ZHBGVD', -INFO )
        !           240:          RETURN
        !           241:       ELSE IF( LQUERY ) THEN
        !           242:          RETURN
        !           243:       END IF
        !           244: *
        !           245: *     Quick return if possible
        !           246: *
        !           247:       IF( N.EQ.0 )
        !           248:      $   RETURN
        !           249: *
        !           250: *     Form a split Cholesky factorization of B.
        !           251: *
        !           252:       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
        !           253:       IF( INFO.NE.0 ) THEN
        !           254:          INFO = N + INFO
        !           255:          RETURN
        !           256:       END IF
        !           257: *
        !           258: *     Transform problem to standard eigenvalue problem.
        !           259: *
        !           260:       INDE = 1
        !           261:       INDWRK = INDE + N
        !           262:       INDWK2 = 1 + N*N
        !           263:       LLWK2 = LWORK - INDWK2 + 2
        !           264:       LLRWK = LRWORK - INDWRK + 2
        !           265:       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
        !           266:      $             WORK, RWORK( INDWRK ), IINFO )
        !           267: *
        !           268: *     Reduce Hermitian band matrix to tridiagonal form.
        !           269: *
        !           270:       IF( WANTZ ) THEN
        !           271:          VECT = 'U'
        !           272:       ELSE
        !           273:          VECT = 'N'
        !           274:       END IF
        !           275:       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
        !           276:      $             LDZ, WORK, IINFO )
        !           277: *
        !           278: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEDC.
        !           279: *
        !           280:       IF( .NOT.WANTZ ) THEN
        !           281:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
        !           282:       ELSE
        !           283:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
        !           284:      $                LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
        !           285:      $                INFO )
        !           286:          CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
        !           287:      $               WORK( INDWK2 ), N )
        !           288:          CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
        !           289:       END IF
        !           290: *
        !           291:       WORK( 1 ) = LWMIN
        !           292:       RWORK( 1 ) = LRWMIN
        !           293:       IWORK( 1 ) = LIWMIN
        !           294:       RETURN
        !           295: *
        !           296: *     End of ZHBGVD
        !           297: *
        !           298:       END

CVSweb interface <joel.bertrand@systella.fr>